Annals of Operations Research

, Volume 155, Issue 1, pp 257–277 | Cite as

Towards a practical engineering tool for rostering

  • Edward Tsang
  • John Ford
  • Patrick Mills
  • Richard Bradwell
  • Richard Williams
  • Paul Scott
Article

Abstract

The profitability and morale of many organizations (such as factories, hospitals and airlines) are affected by their ability to schedule their personnel properly. Sophisticated and powerful constraint solvers such as ILOG, CHIP, ECLiPSe, etc. have been demonstrated to be extremely effective on scheduling. Unfortunately, they require non-trivial expertise to use. This paper describes ZDC-rostering, a constraint-based tool for personnel scheduling that addresses the software crisis and fills a void in the space of solvers. ZDC-rostering is easier to use than the above constraint-based solvers and more effective than Microsoft’s Excel Solver. ZDC-rostering is based on an open-source computer-aided constraint programming package called ZDC, which decouples problem formulation (or modelling) from solution generation in constraint satisfaction. ZDC is equipped with a set of constraint algorithms, including Extended Guided Local Search, whose efficiency and effectiveness have been demonstrated in a wide range of applications. Our experiments show that ZDC-rostering is capable of solving realistic-sized and very tightly-constrained problems efficiently. ZDC-rostering demonstrates the feasibility of applying constraint satisfaction techniques to solving rostering problems, without having to acquire deep knowledge in constraint technology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, A., & Tsang, E. P. K. (2004). Software engineering aspects of constraint-based timetabling—a case study. Information & Software Technology Journal, 46, 359–372. CrossRefGoogle Scholar
  2. Aickelin, U., & Dowsland, K. A. (2003). An indirect algorithm for a nurse scheduling problem. Computers and Operational Research, 31(5), 761–778. CrossRefGoogle Scholar
  3. Bessière, C., & Régin, J. C. (1996). MAC and combined heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In LNCS : Vol. 1118. Proc., 2nd international conference on principle and practice of constraint programming (CP’96) (pp. 61–75). Cambridge: Springer. Google Scholar
  4. Borrett, J. E., & Tsang, E. P. K. (2001). A context for constraint satisfaction problem formulation selection. Constraints, 6(4), 299–327. CrossRefGoogle Scholar
  5. Borrett, J. E., Tsang, E. P. K., & Walsh, N. R. (1996). Adaptive constraint satisfaction: the quickest first principle. In Proceedings, 12th European conference on AI, Budapest, Hungary (pp. 160–164). Google Scholar
  6. Bourdais, S., Galinier, P., & Pesant, G. (2003). HIBISCUS: a constraint programming application to staff scheduling in health care. In Rossi, F. (Ed.), Proceedings, 9th principles and practice of constraint programming (CP 2003) (pp. 153–167). Google Scholar
  7. Bradwell, R., Ford, J., Mills, P., Tsang, E. P. K., & Williams, R. (2000). An overview of the CACP project: modelling and solving constraint satisfaction/optimisation problems with minimal expert intervention. In Workshop on analysis and visualization of constraint programs and solvers, constraint programming, Singapore. Google Scholar
  8. Burke, E. K., De Causmaecker, P., & Vanden Berghe, G. (1999). A hybrid tabu search algorithm for the nurse rostering problem. In B. McKay et al. (Eds.), LNCS : Vol. 1585. Simulated evolution and learning 1998 (pp. 187–194). Berlin: Springer. Google Scholar
  9. Burke, E. K., De Causmaecker, P., Cowling, P., & Vanden Berghe, G. (2001). A memetic approach to the nurse rostering problem. In Applied Intelligence special issue on simulated evolution and learning (Vol. 15, pp. 199–214). Berlin: Springer. Google Scholar
  10. Burke, E. K., De Causmaecker, P., Petrovic, S., & Vanden Berghe, G. (2003a). Variable neighbourhood search for nurse rostering problems. In M. C. G. Resende & J. Pinho de Sousa (Eds.), Metaheuristics: computer decision-making (Vol. 7, pp. 153–172). Dordrecht: Kluwer Academic. Google Scholar
  11. Burke, E. K., Kendall, G., Newall, J., Hart, E., Ross, P., & Schulenburg, S. (2003b). Hyper-heuristics: an emerging direction in modern search technology. In F. Glover & G. Kochenberger (Eds.), Handbook of Meta-Heuristics (Vol. 16, pp. 457–474). Dordrecht: Kluwer Academic. Google Scholar
  12. Burke, E., MacCarthy, B., Petrovic, S., & Qu, R. (2003c). Knowledge discovery in a hyper-heuristic for course timetabling using case-based reasoning. In E. K. Burke & P. Decausmaecker (Eds.), Springer lecture notes in computer science : Vol. 2740. Practice and theory of automated timetabling IV (pp. 276–287). Berlin: Springer. Google Scholar
  13. Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004). The state of the art of nurse rostering. The Journal of Scheduling, 7(6), 441–499. CrossRefGoogle Scholar
  14. Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper heuristic for timetabling problems. European Journal of Operational Research, 176, 177–192. CrossRefGoogle Scholar
  15. Burke, E., Petrovic, S., & Qu, R. (2006). Case based heuristic selection for timetabling problems. Journal of Scheduling, 9(2), 115–132. CrossRefGoogle Scholar
  16. Chamard, A., Fischler, A., Guinaudeau, D.-B., & Guillard, A. (1995). CHIC lessons on CLP methodology. ECRC Report. Google Scholar
  17. Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems—a bibliographic survey. European Journal of Operational Research, 151(3), 447–460. CrossRefGoogle Scholar
  18. Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are. In Proc., 12th international joint conference on AI (pp. 331–337). Google Scholar
  19. Dechter, R. (2003). Constraint processing. San Marko: Morgan Kaufmann. Google Scholar
  20. DiSCiPl debugging systems for constraint programming, http://discipl.inria.fr/, 1999.
  21. Ernst, A., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004a). Staff scheduling and rostering: a review of applications, methods and models. European Journal of Operational Research, 153(1), 3–27. CrossRefGoogle Scholar
  22. Ernst, A., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004b). Annotated bibliography of personnel scheduling and rostering. Annals of Operations Research, 127, 21–144. CrossRefGoogle Scholar
  23. Fernandez, A., & Hill, P. M. (2000). A comparative study of eight constraint programming languages over the Boolean and finite domains. Constraints, 5(3), 279–305. CrossRefGoogle Scholar
  24. Freuder, E. C. (1999). Modeling: the final frontier. In The first international conference on the practical application of constraint technologies and logic programming (PACLP), London, April 1999 (pp. 15–21). Google Scholar
  25. Freuder, E. C., & Mackworth, A. (Eds.) (1994). Constraint-based reasoning. Cambridge: MIT Press. Google Scholar
  26. Gent, I. P., & Smith, B. (2000). Symmetry breaking in constraint programming. In Proceedings, European conference on artificial intelligence, Berlin, Germany, August 2000 (pp. 599–603). Google Scholar
  27. Gervet C. (2001). Large scale combinatorial optimization: a methodological viewpoint, DIMACS series in discrete mathematics and theoretical computer science (Vol. 57, pp. 151–175). Google Scholar
  28. Hnich, B., Kiziltan, Z., & Walsh, T. (2002). Modelling a balanced academic curriculum problem. In Proceedings, fourth international workshop on integration of AI and OR techniques in constraint programming for combinatorial optimisation problems, CP-AI-OR’02 (pp. 121–131). Google Scholar
  29. Hogg, T., & Williams, C. P. (1994). The hardest constraint problems: a double phase transition. Research Note, Artificial Intelligence, 69, 359–377. CrossRefGoogle Scholar
  30. Hooker, J. N. (1995). Testing heuristics: we have it all wrong. Journal of Heuristics, 1(1), 33–42. CrossRefGoogle Scholar
  31. Kwan, A. (1997). A framework for mapping constraint satisfaction problems to solution methods. PhD Thesis, Department of Computer Science, University of Essex, Colchester, UK. Google Scholar
  32. Lever, J., Wallace, M., & Richards, B. (1995). Constraint logic programming for scheduling and planning. British Telecom Technology Journal, 13(1), 73–80. Google Scholar
  33. Li, H., Lim, A., & Rodrigues, B. (2003). A hybrid AI approach for nurse rostering problem. In Proceedings of the 2003 ACM symposium on applied computing (pp. 730–735). ACM Press. Google Scholar
  34. Meyer auf’m Hofe, H. (2001a). Solving rostering tasks as constraint optimization. In E. Burke & W. Erben (Eds.), LNCS : Vol. 2079. Practice and theory of automated timetabling (pp. 191–212). Berlin: Springer. CrossRefGoogle Scholar
  35. Meyer auf’m Hofe, H. (2001b). Nurse rostering as constraint satisfaction with fuzzy constraints and inferred control strategies. In E. C. Freuder & R. J. Wallace (Eds.), DIMACS series : Vol. 57. Constraint programming and large scale optimisation problems (pp. 67–99). Providence: AMS. Google Scholar
  36. Michel, L., & Van Hentenryck, P. (2001). OPL++: a modeling layer for constraint programming libraries. In Proceedings, third international workshop on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CP-AI-OR-01), Wye, UK, 8–10 April 2001 (pp. 205–219). Google Scholar
  37. Mills, P. (2002). Extensions to guided local search. PhD Thesis, Department of Computer Science, University of Essex, Colchester, UK. Google Scholar
  38. Mills, P., Tsang, E. P. K., Williams, R., Ford, J., & Borrett, J. (1998). EaCL 1.0: an easy abstract constraint programming language. Technical Report CSM-321, University of Essex, Colchester, UK. Google Scholar
  39. Mills, P., Tsang, E. P. K., & J. Ford, J. (2003). Applying an extended guided local search to the quadratic assignment problem. Annals of Operations Research, 118, 121–135. CrossRefGoogle Scholar
  40. Petrie, K. E., & Smith, B. M. (2003). Symmetry breaking in graceful graphs. In F. Rossi (Ed.), LNCS : Vol. 2833. Proc., principles and practice of constraint programming (CP 2003) (pp. 930–934). Berlin: Springer. Google Scholar
  41. Rodosek, R., & Wallace, M. (1998). A generic model and hybrid algorithm for hoist scheduling problems. In M. Maher & J.-F. Puget (Eds.), LNCS : Vol. 1520. Proceedings, 4th international conference on principles and practice of constraint programming—CP98, Pisa, Italy, October 1998 (pp. 385–399). Berlin: Springer. Google Scholar
  42. Ross, P. (2005). Hyper-heuristics. In E. K. Burke & G. Kendall (Eds.), Search methodologies: introductory tutorials in optimization and decision support techniques (pp. 526–529). Berlin: Springer. Chap. 17. Google Scholar
  43. Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint satisfaction. In Proc., 11th European conference on artificial intelligence (pp. 125–129). Google Scholar
  44. Smith, B. M., & Grant, S. A. (1995). Where the exceptionally hard problems are. In Proceedings, workshop on studying and solving really hard problems, first international conference on principles and practice of constraint programming, September 1995 (pp. 172–182). Google Scholar
  45. The Computer-aided Constraint Programming (CACP) Project (including links to downloads) http://cswww.essex.ac.uk/Research/CSP/cacp/, funded by EPSRC, March 1997–August 2000, led by Edward Tsang, John Ford and Paul Scott.
  46. Tsang, E. P. K. (1993). Foundations of constraint satisfaction. London: Academic. Google Scholar
  47. Tsang, E. P. K., Mills, P., Williams, R., Ford, J., & Borrett, J. (1999). A computer aided constraint programming system. In The first international conference on the practical application of constraint technologies and logic programming (PACLP), London, April 1999 (pp. 81–93). Google Scholar
  48. Voudouris, C., & Tsang, E. P. K. (2003). Guided local search. In F. Glover (Ed.), Handbook of metaheuristics (pp. 185–218). Dordrecht: Kluwer Academic. Chap. 7. CrossRefGoogle Scholar
  49. Wallace, M., Schimpf, J., Shen, K., & Harvey, W. (2004). On benchmarking constraint logic programming platforms. response to Fernandez and Hill’s “A comparative study of eight constraint programming languages over the Boolean and finite domains”. Constraints, 9(1), 5–34. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Edward Tsang
    • 1
  • John Ford
    • 1
  • Patrick Mills
    • 1
  • Richard Bradwell
    • 1
  • Richard Williams
    • 1
  • Paul Scott
    • 1
  1. 1.Department of Computer ScienceUniversity of EssexColchesterUK

Personalised recommendations