Annals of Operations Research

, Volume 154, Issue 1, pp 29–50

A survey of recent developments in multiobjective optimization

Article

Abstract

Multiobjective Optimization (MO) has many applications in such fields as the Internet, finance, biomedicine, management science, game theory and engineering. However, solving MO problems is not an easy task. Searching for all Pareto optimal solutions is expensive and a time consuming process because there are usually exponentially large (or infinite) Pareto optimal solutions. Even for simple problems determining whether a point belongs to the Pareto set is \(\mathcal{NP}\) -hard. In this paper, we discuss recent developments in MO. These include optimality conditions, applications, global optimization techniques, the new concept of epsilon Pareto optimal solution, and heuristics.

Keywords

Multiobjective optimization Pareto optimality Duality Generalized convexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghezzaf, B., & Hachimi, M. (2000). Generalized invexity and duality in multiobjective programming problems. Journal of Global Optimization, 18, 91–101. CrossRefGoogle Scholar
  2. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Jersey: New Prentice–Hall. Google Scholar
  3. Ansoff, H. I. (1968). Corporate strategy. Harmandsworth: Penguin. Google Scholar
  4. Bell, D. E., & Raiffa, H. (1988). Risky choice revisited. In D. E. Bell, H. Raiffa & A. Tversky (Eds.), Decision making: descriptive, normative and prescriptive interactions (pp. 99–112). Cambridge: Cambridge University Press. Google Scholar
  5. Bhaskar, K. (1979). A multiple objective approach to capital budgeting. Accounting and Business Research, 9, 25–46. Google Scholar
  6. Bitran, G. R. (1977). Linear multiple objective programs with zero-one variables. Mathematical Programming, 13, 121–139. CrossRefGoogle Scholar
  7. Bitran, G. R. (1979). Theory and algorithms for linear multiple objective programs with zero-one variables. Mathematical Programming, 17, 362–390. CrossRefGoogle Scholar
  8. Bitran, G. R. (1981). Duality for nonlinear multi-criteria optimization problems. Journal of Optimization Theory and Applications, 35, 367–401. CrossRefGoogle Scholar
  9. Bouri, A., Martel, J. M., & Chabchoub, H. (2002). A multi-criterion approach for selecting attractive portfolio. Journal of Multi-Criteria Decision Analysis, 11, 269–277. CrossRefGoogle Scholar
  10. Brumbaugh-Smith, J., & Shier, D. (1989). An empirical investigation of some bicriterion-shortest path algorithms. European Journal of Operational Research, 43, 216–224. CrossRefGoogle Scholar
  11. Camerini, P.M., Galbiati, G., & Maffioli, F. (1984). The complexity of multi-constrained spanning tree problems. In Theory of algorithms (pp. 53–101). Colloquium Pecs 1984. Google Scholar
  12. Chalmet, L. G., Lemonidis, L., & Elzinga, D. J. (1986). An algorithm for the bi-criterion integer programming problem. European Journal of Operations Research, 25, 292–300. CrossRefGoogle Scholar
  13. Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making theory and methodology. New York: Elsevier Science. Google Scholar
  14. Cloquette, J. F., Gerard, M., & Hadhri, M. (1995). An empirical analysis of Belgian daily returns using GARCH models. Cahiers Economiques de Bruxelles, 418, 513–535. Google Scholar
  15. Corley, H. W. (1985). Efficient spanning trees. Journal of Optimization Theory and Applications, 45, 481–485. CrossRefGoogle Scholar
  16. Craven, B. D. (1981). Duality for the generalized convex fractional programs. In S. Schiable & W. T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics (pp. 473–489). New York: Academic. Google Scholar
  17. Das, L. N., & Nanda, S. (1997). Symmetric dual multiobjective programming. European Journal of Operational Research, 97, 167–171. CrossRefGoogle Scholar
  18. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerical Mathematics, 1, 262–271. CrossRefGoogle Scholar
  19. Eben-Chaime, M. (1996). Parametric solution for linear bicriteria knapsack models. Management Science, 42, 1565–1575. Google Scholar
  20. Egudo, R. (1989). Efficiency and generalized convex duality for multiobjective programs. Journal of Mathematical Analysis and Applications, 138, 84–94. CrossRefGoogle Scholar
  21. Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22, 425–460. Google Scholar
  22. Etzioni, O., Hanks, S., Jiang, T., Karp, R. M., Madari, O., & Waarts, O. (1996). Efficient information gathering on the Internet. In Proceedings of the 37th IEEE symposium on foundations of computer science (pp. 234–243). Google Scholar
  23. Gandibleux, X., & Freville, A. (2000). Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objective case. Journal of Heuristics, 6, 361–383. CrossRefGoogle Scholar
  24. Garfinkel, R. S., & Nemhauser, G. L. (1972). Integer programming. New York: Wiley. Google Scholar
  25. Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22, 618–630. CrossRefGoogle Scholar
  26. Hachimi, M., & Aghezzaf, B. (2004). Sufficiency and duality in differentiable multiobjective programming involving generalized type I functions. Journal of Mathematical Analysis and Applications, 296, 382–392. CrossRefGoogle Scholar
  27. Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man and Cybernetics, 1, 296–297. Google Scholar
  28. Hamacher, H. W., & Ruhe, G. (1994). On spanning tree problems with multipleobjectives. Annals of Operations Research, 52, 209–230. CrossRefGoogle Scholar
  29. Hanson, M. A. (1961). A duality theorem in nonlinear programming with nonlinear constraints. Australian Journal of Statistics, 3, 67–71. CrossRefGoogle Scholar
  30. Hanson, M. A. (1981). On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications, 80, 545–550. CrossRefGoogle Scholar
  31. Henig, M. I. (1985). The shortest path problem with two objective functions. European Journal of Operational Research, 25, 281–291. CrossRefGoogle Scholar
  32. Hillermeier, C. (2001). Nonlinear multiobjective optimization: a generalized homotopy approach. Boston: Birkhauser Verlag. Google Scholar
  33. Huarng, F., Pulat, P. S., & Shih, L. (1996). A computational comparison of some bicriterion shortest path algorithms. Journal of the Chinese Institution of Industrial Engineers, 13, 121–125. Google Scholar
  34. Hurson, C., & Zopounidis, C. (1995). On the use of multi-criteria decision aid methods to portfolio selection. Journal of Euro-Asian Management, 1, 69–94. Google Scholar
  35. Jacquillat, B. (1972). Les modèles d’évaluation et de sélection des valeurs mobilières: panorama des recherches américaines. Analyse Financière, 11, 68–88. Google Scholar
  36. Jahn, J. (2004). Vector optimization: theory, applications and extensions. Berlin: Springer. Google Scholar
  37. Jeyakumar, V. (1985). Strong and weak invexity in mathematical programming. Methods of Operations Research, 55, 109–125. Google Scholar
  38. Jeyakumar, V., & Mond, B. (1992). On generalized convex mathematical programming. Journal of the Australian Mathematical Society, Series B, 34, 43–53. Google Scholar
  39. Ibaraki, T. (1987). Enumerative approaches to combinatorial optimization, part ii. Annals of Operations Research, 11, 343–602. CrossRefGoogle Scholar
  40. Khan, Z., & Hanson, M. A. (1997). On ratio invexity in mathematical programming. Journal of Mathematical Analysis and Applications, 205, 330–336. CrossRefGoogle Scholar
  41. Khoury, N., Marte, J. M., & Veilleux, M. (1993). Methode multicritere de selection de portefeuilles indiciels interantionaux. Acualite Economique, 69, 171–190. Google Scholar
  42. Klamroth, K., & Wiecek, M. (2000a). Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics, 47, 57–76. CrossRefGoogle Scholar
  43. Klamroth, K., & Wiecek, M. (2000b). Time-dependent capital budgeting with multiple criteria. In Y. Y. Haimes & R. E. Steuer (Eds.), Lecture notes in economics and mathematical systems: Vol. 487. Research and practice in multiple criteria decision making (pp. 421–432). Berlin: Springer. Google Scholar
  44. Klamroth, K., Tind, J., & Zust, S. (2004). Integer programming duality in multiple objective programming. Journal of Global Optimization, 29, 1–18. CrossRefGoogle Scholar
  45. Klein, D., & Hannan, E. (1982). An algorithm for the multiple objective integer linear programming problem. European Journal of Operations Research, 93, 378–385. CrossRefGoogle Scholar
  46. Kostreva, M. M., & Wiecek, M. M. (1993). Time dependency in multiple objective dynamic programming. Journal of Mathematical Analysis and Applications, 173, 289–307. CrossRefGoogle Scholar
  47. Kruskal, J. B. (1956). On the shortest spanning tree of a graph and the traveling salesman problem. In Proceedings of American mathematical society 7 (pp. 48–50). Google Scholar
  48. Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceedings of the second Berkeley symposium on mathematical statistics and probability (pp. 481–492). Los Angeles: University of California Press. Google Scholar
  49. Lee, S. M., & Lerro, A. J. (1974). Capital budgeting for multiple objectives. Management Science, 36, 1106–1119. Google Scholar
  50. Liang, Z. A., Huang, H. X., & Pardalos, P. M. (2001). Optimality conditions and duality for a class of nonlinear fractional programming problems. Journal of Optimization Theory and Applications, 110, 611–619. CrossRefGoogle Scholar
  51. Liang, Z. A., Huang, H. X., & Pardalos, P. M. (2003). Efficiency conditions and duality for a class of multiobjective fractional programming problems. Journal of Global Optimization, 27, 447–471. CrossRefGoogle Scholar
  52. Luc, D. T. (1984). On duality theory in multiobjective programming. Journal of Optimization Theory and Applications, 43, 557–582. CrossRefGoogle Scholar
  53. Luc, D. T., & Schaible, S. (1997). Efficiency and generalized concavity. Journal of Optimization Theory and Applications, 94, 147–153. CrossRefGoogle Scholar
  54. Maeda, T. (1994). Constraint qualifications in multiobjective optimization problems: differentiable case. Journal of Optimization Theory and Applications, 80, 483–500. CrossRefGoogle Scholar
  55. Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91. CrossRefGoogle Scholar
  56. Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. New York: Wiley. Google Scholar
  57. Martello, S., Pisinger, D., & Toth, P. (1997). New trends in exact algorithms for the 0–1 knapsack problem. In J. Barceló (Ed.), Proceedings of EURO/IMFORMS-97 (pp. 151–160), Barcelona Google Scholar
  58. Marusciac, I. (1982). On Fritz John type optimality criterion in multiobjective optimization. L’Analyse Numérique et la Theorie de l’Approximation, 11, 109–114. Google Scholar
  59. Miettinen, K. M. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic. Google Scholar
  60. Mond, B., & Weir, T. (1981). Generalized concavity and duality. In S. Schaible & W. T. Ziemba (Eds.), Generalized convexity in optimization and economics (pp. 263–280). New York: Academic. Google Scholar
  61. Nakayama, H. (1985). Duality theory in vector optimization: an overview, decision making with multiple objectives. In Y.Y. Haimes & V. Chankong (Eds.), Lecture Notes in Economics and Mathematical Systems (Vol. 337, pp. 109–125). Berlin: Springer. Google Scholar
  62. Papadimitriou, C. H., & Yannakakis, M. (2000). On the approximability of trade-offs and optimal access of web sources, In Proceedings of the 41st annual symposium on foundations of computer science (pp. 86–92). Google Scholar
  63. Pardalos, P. M., Siskos, Y., & Zopounidis, C. (Eds.). (1995). Advances in multicriteria analysis. Netherlands: Kluwer Academic. Google Scholar
  64. Pareto, V. (1964). Course d’economie politique. Genève: Libraire Drotz. The first edition in 1986. Google Scholar
  65. Preda, V. (1992). On efficiency and duality for multiobjective programs. Journal of Mathematical Analysis and Applications, 166, 365–377. CrossRefGoogle Scholar
  66. Prim, R. C. (1957). Shortest connection networks and some generations. Bell System Technical Journal, 36, 1389–1401. Google Scholar
  67. Ramos, R. M., Aloso, S., Sicilia, J., & González, C. (1998). The problem of the optimal biobjective spanning tree. European Journal of Operational Research, 111, 617–628. CrossRefGoogle Scholar
  68. Reddy, L. V., & Mukherjee, R. N. (1999). Some results on mathematical programming with generalized ratio invexity. Journal of Mathematical Analysis and Applications, 240, 299–310. CrossRefGoogle Scholar
  69. Rosenblatt, M. J., & Sinuany-Stern, Z. (1989). Generating the discrete efficient frontier to the capital budgeting problem. Operations Research, 37, 38–394. Google Scholar
  70. Ruíz-Canales, P., & Rufián-Lizana, A. (1995). A characterization of weakly efficient points. Mathematical Programming, 68, 205–212. Google Scholar
  71. Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjective optimization. Orlando: Academic. Google Scholar
  72. Schweigert, D. (1990). Linear extensions and vector-valued spanning trees. Methods of Operations Research, 60, 219–222. Google Scholar
  73. Serafini, P. (1986). Some considerations about computational complexity for multi objective combinatorial problems. In J. Jahn & W. Krabs (Eds.), Lecture notes in economics and mathematical systems: Vol. 294. Recent advances and historical development of vector optimization (pp. 222–231). Berlin: Springer. Google Scholar
  74. Singh, C., & Hanson, M. A. (1991). Multiobjective fractional programming duality theory. Naval Research Logistics, 38, 925–933. Google Scholar
  75. Singh, C., Bhatia, D., & Rueda, N. (1996). Duality in nonlinear multiobjective programming using augmented Lagrangian functions. Journal of Optimization Theory and Applications, 88, 659–670. CrossRefGoogle Scholar
  76. Skriver, A. J. V., & Andersen, K. A. (2000). A label correcting approach for solving bicriterion shortest path problems. Computers and Operations Research, 27, 507–524. CrossRefGoogle Scholar
  77. Sniedovich, M. (1988). A multi-objective routing problem revisited. Engineering Optimization, 13, 99–108. Google Scholar
  78. Spronk, J., & Hallerbach, W. G. (1997). Financial modelling: where to go? With an illustration for portfolio management. European Journal of Operational Research, 99, 113–127. CrossRefGoogle Scholar
  79. Steuer, R. E. (1986). Multiple criteria optimization: theory, computation and application. New York: Wiley. Google Scholar
  80. Steuer, R. E., & Na, P. (2003). Multiple criteria decision making combined with finance: a categorized bibliography. European Journal of Operational Research, 150, 496–515. CrossRefGoogle Scholar
  81. Tanina, T., & Sawaragi, Y. (1979). Duality theory in multiobjective programming. Journal of Optimization Theory and Applications, 27, 509–529. CrossRefGoogle Scholar
  82. Thanassoulis, E. (1985). Selecting a suitable solution method for a multiobjective programming capital budgeting problem. Journal of Business Finance and Accounting, 12, 453–471. CrossRefGoogle Scholar
  83. Ulungu, E. L., & Teghem, J. (1994). Application of the two phases method to solve the bi-objective knapsack problem. Technical report, Dept. of Mathematics & Operational Research, Faculté Polytechnique de Mons, Mons, Belgium, 1994. Google Scholar
  84. Ulungu, E. L., & Teghem, J. (1997). Solving multiobjective knapsack problems by a branch and bound procedure. In J. N. Climaco (Ed.), Multicriteria analysis (pp. 269–278). New-York: Springer. Google Scholar
  85. Vial, J. P. (1983). Strong and weak convexity set and functions. Mathematics of Operations Research, 8, 231–259. Google Scholar
  86. Villarreal, B., & Karwan, M. H. (1981). Multicriteria integer programming: a hybrid dynamic programming recursive approach. Mathematical Programming, 21, 204–223. CrossRefGoogle Scholar
  87. Visée, M., Teghem, J., Pirlot, M., & Ulungu, E. L. (1996). Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem. Technical report, Department of Mathematics & Operational Research, Faculté Polytechnique de Mons, Belgium, 1996. Google Scholar
  88. Wang, S. (1991). Second-order necessary and sufficient conditions in multiobjective programming. Numerical functional Analysis and Applications, 12, 237–252. Google Scholar
  89. Warburton, A. (1987). Approximation of a Pareto optima in multiple-objective shortest-path problems. Operations Research, 35, 70–79. CrossRefGoogle Scholar
  90. Weingartner, H. M. (1963). Mathematical programming and the analysis of capital budgeting problems. New Jersey: Prentice–Hall. Google Scholar
  91. Weir, T. (1990). A note on invex functions and duality in generalized fractional programming. Research report, Department of Mathematics, The University of New South Wales, ACT 2600, Australia. Google Scholar
  92. Weir, T., & Mond, B. (1988). Symmetric and self duality in multiobjective programming. Asia-Pacific Journal of Operational Research, 5, 124–133. Google Scholar
  93. Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8, 59–60. CrossRefGoogle Scholar
  94. Zhou, G., & Gen, M. (1999). Genetic algorithm approach on multi-criteria minimum spanning tree problem. European Journal of Operational Research, 114, 141–152. CrossRefGoogle Scholar
  95. Zopounidis, C. (1999). Multicriteria decision aid in financial management. European Journal of Operational Research, 119, 404–415. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dept. of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations