Advertisement

Annals of Operations Research

, Volume 153, Issue 1, pp 297–345 | Cite as

Production planning with load dependent lead times: an update of research

  • Julia Pahl
  • Stefan VoßEmail author
  • David L. Woodruff
Article

Abstract

Lead times impact the performance of the supply chain significantly. Although there is a large body of literature concerning queuing models for the analysis of the relationship between capacity utilization and lead times, and another body of work on control and order release policies that take lead times into consideration, there have been relatively few aggregate planning models that recognize the (nonlinear) relationship between the planned utilization of capacity and lead times. In this paper we provide an in-depth discussion of the state-of-the art in this area, with particular attention to those models that are appropriate at the aggregate planning level.

Keywords

Production planning Load dependent lead times Mathematical programming Supply chain management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, C. (1976). Dynamic modeling and control of congestion-prone systems. Operations Research, 24(3), 400–419. Google Scholar
  2. Asmundsson, J., Rardin, R. L., & Uzsoy, R. (2002). Tractable nonlinear capacity models for aggregate production planning. Working paper, School of Industrial Engineering, Purdue University, West Lafayette. Google Scholar
  3. Asmundsson, J., Rardin, R. L., & Uzsoy, R. (2003). An experimental comparison of linear programming models for production planning utilizing fixed lead time and clearing functions. Working paper, School of Industrial Engineering, Purdue University, West Lafayette. Google Scholar
  4. Asmundsson, J., Rardin, R. L., Turkseven, C. H., & Uzsoy, R. (2006a). Tractable nonlinear capacity models for production planning. Working paper, School of Industrial Engineering, Purdue University, West Lafayette. Google Scholar
  5. Asmundsson, J., Rardin, R. L., & Uzsoy, R. (2006b). Tractable nonlinear production planning models for semiconductor wafer fabrication facilities. IEEE Transactions on Semiconductor Manufacturing, 19(1), 95–111. CrossRefGoogle Scholar
  6. Baccelli, F., & Bremaud, P. (1987). Palm probabilities and stationary queues. Berlin: Springer. Google Scholar
  7. Bechte, W. (1982). Controlling manufacturing lead time and work-in-process inventory by means of load-oriented order release. In APICS, 25th annual international conference of production of the American production inventory control society (pp. 67–72). Google Scholar
  8. Bechte, W. (1988). Theory and practice of load-oriented manufacturing control. International Journal of Production Research, 26(3), 375–395. Google Scholar
  9. Ben-Daya, M., & Raouf, A. (1994). Inventory lead time as a decision variable. Journal of the Operational Research Society, 45(5), 579–582. CrossRefGoogle Scholar
  10. Bertrand, J. W. M. (1983). The effect of workload dependent due dates on job shop performance. Management Science, 29(7), 799–816. Google Scholar
  11. Bertrand, J. W. M., & Wijngaard, J. (1986). The structuring of production control systems. International Journal of Operations and Production Management, 6(2), 5–20. Google Scholar
  12. Bertrand, J. W. M., & Wortmann, J. (1981). Production control and information systems for component manufacturing. Amsterdam: Elsevier. Google Scholar
  13. Bertsimas, D., & Sethuraman, J. (2002). From fluid relaxations to practical algorithms for job shop scheduling: The makespan objective. Mathematical Programming, 92(1), 61–102. CrossRefGoogle Scholar
  14. Billington, P. J., McClain, J. O., & Thomas, L. J. (1983). Mathematical programming approaches to capacity-constrained mrp systems: Review, formulation and problem reduction. Management Science, 29(10), 1126–1137. Google Scholar
  15. Bitran, G. R., Haas, E. A., & Hax, A. C. (1981). Hierarchical production planning: A single stage system. Operations Research, 29, 717–743. Google Scholar
  16. Bitran, G. R., Haas, E. A., & Hax, A. C. (1982). Hierarchical production planning: A two stage system. Operations Research, 30, 232–251. Google Scholar
  17. Buzacott, J. A., & Shantikumar, J. G. (1993). Stochastic models of manufacturing systems. New York: Englewood Cliffs. Google Scholar
  18. Caramanis, M. C. (2000). Multiple time scale decomposition in the production planning of stochastic manufacturing supply chain systems. Internet source: http://www.bu.edu/pcms/docs/mcc/mtsdppsc.pdf, last call 29 Dec. 2006.
  19. Caramanis, M. C., & Anli, O. M. (1999a). Modeling load-dependent lead time constraints for efficient supply chain coordination: Convexity issues. In Proceedings of the 38th IEEE conference on decision and control (Vol. 1, pp. 900–906). Google Scholar
  20. Caramanis, M. C., & Anli, O. M. (1999b). Dynamic lead time modeling for JIT production planning. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 1450–1455). Google Scholar
  21. Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46, 436–443. CrossRefGoogle Scholar
  22. Clark, A. R., & Armentano, V. A. (1995). A heuristic for a resource-capacitated multi-stage lot-sizing problem with lead times. Journal of the Operational Research Society, 46, 1208–1222. CrossRefGoogle Scholar
  23. Dauzère-Pérès, S., & Lasserre, J.-B. (2002). On the importance of sequencing decisions in production planning and scheduling. International Transactions in Operational Research, 9(6), 779–793. CrossRefGoogle Scholar
  24. de Kok, T. G., & Fransoo, J. C. (2003). Planning supply chain operations: Definition and comparison of planning concepts. In A. G. de Kok & S. C. Graves (Eds.), Supply chain management: Design, coordination and operation. Handbooks in operations research and management science (pp. 597–675). Amsterdam: North-Holland. Google Scholar
  25. Dempster, M. A. H., Fisher, M. L., Jansen, L., Lageweg, B. J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1981). Analytical evaluation of hierarchical planning systems. Operations Research, 29(4), 707–716. Google Scholar
  26. Domschke, W., Scholl, A., & Voß, S. (1997). Produktionsplanung: Ablauforganisatorische Aspekte (2nd ed.). Berlin: Springer. Google Scholar
  27. Enns, S. T. (2001). MRP performance effects due to lot size and planned lead time settings. International Journal of Production Research, 39(1), 461–480. CrossRefGoogle Scholar
  28. Enns, S. T., & Choi, S. (2002). Use of GI/G/1 queuing approximations to set tactical parameters for the simulation of mrp systems. In Proceedings of the 34th conference on winter simulation: Exploring new frontiers (pp. 1123–1129). Google Scholar
  29. Enns, S. T., & Suwanruji, P. (2004). Work load responsive adjustment of planned lead times. Journal of Manufacturing Technology Management, 15(1), 90–100. CrossRefGoogle Scholar
  30. Ettl, M., Feigin, G. E., Lin, G. Y., & Yao, D. D. (2000). A supply network model with base-stock control and service requirements. Operations Research, 48, 216–232. CrossRefGoogle Scholar
  31. Fleischmann, B., & Meyr, H. (2003). Planning hierarchy, modeling and advanced planning systems. In A. G. de Kok & S. C. Graves (Eds.), Supply chain management: Design, coordination and operation. Handbooks in operations research and management science (pp. 455–523). Amsterdam: North-Holland. CrossRefGoogle Scholar
  32. Glassey, C. R., & Resende, M. G. C. (1988). Closed-loop job release control for VLSI circuit manufacturing. IEEE Transactions on Semiconductor Manufacturing, 1, 36–46. CrossRefGoogle Scholar
  33. Goldratt, E. M. (1988). Computerized shop floor scheduling. International Journal of Production Research, 26(3), 443–455. Google Scholar
  34. Goldratt, E. M., & Fox, R. E. (1986). The race. Croton-on-Hudson: North River. Google Scholar
  35. Graves, S. C. (1986). A tactical planning model for job shops. Operations Research, 34, 522–533. Google Scholar
  36. Graves, S. C., & Willems, S. P. (2000). Optimizing strategic safety stock placement in supply chains. Manufacturing & Service Operations Management, 2, 68–83. CrossRefGoogle Scholar
  37. Hackman, S., Rianõ, G., Serfozo, R., Ng, S. H., Lendermann, P., & Chan, L. P. (2002). A stochastic production planning model. Working paper, The Logistics Institute, Georgia Tech, and The Logistics Institute—Asia Pacific, National University of Singapore. Google Scholar
  38. Hackman, S. T., & Leachman, R. C. (1989). A general framework for modeling production. Management Science, 35, 478–495. Google Scholar
  39. Hall, N. G., & Potts, C. N. (2003). Supply chain scheduling: Batching and delivery. Operations Research, 51, 566–584. CrossRefGoogle Scholar
  40. Hendry, L. C., & Kingsman, B. C. (1991). Job release: Part of a hierarchical system to manage manufacturing lead times in make-to-order companies. Journal of the Operational Research Society, 42, 871–883. CrossRefGoogle Scholar
  41. Homem-de-Mello, T., Shapiro, A., & Spearman, M. L. (1999). Finding optimal material release times using simulation-based optimization. Management Science, 45, 86–102. Google Scholar
  42. Hopp, W., & Spearman, M. (2001). Factory physics-foundations of manufacturing management (2nd ed.). Boston: McGraw-Hill. Google Scholar
  43. Hopp, W. J., Spearman, M. L., & Woodruff, D. L. (1990). Practical strategies for lead time reduction. Manufacturing Review, 3(2), 78–84. Google Scholar
  44. Horiguchi, K., Raghavan, N., Uzsoy, R., & Venkateswaran, S. (2001). Finite capacity production planning algorithms for a wafer fabrication facility. International Journal of Production Research, 39, 825–842. CrossRefGoogle Scholar
  45. Huang, G. Q., Lau, J. S. K., & Mak, K. L. (2003). The impacts of sharing production information on supply chain dynamics: A review of the literature. International Journal of Production Research, 41, 1483–1517. CrossRefGoogle Scholar
  46. Hung, Y.-F., & Hou, M.-C. (2001). A production planning approach based on iterations of linear programming optimization and flow time prediction. Journal of the Chinese Institute of Industrial Engineers, 18(3), 55–67. CrossRefGoogle Scholar
  47. Hwang, S., & Uzsoy, R. (2004). A single-product dynamic lot sizing model with work in process and congestion. Technical report, School of Industrial Engineering, Purdue University, West Lafayette. Google Scholar
  48. Jodlbauer, H. (2004). Discussion of the standard processing time. International Journal of Production Research, 42(7), 1471–1479. CrossRefGoogle Scholar
  49. Jodlbauer, H. (2005). Definition and properties of the input-weighted average lead-time. European Journal of Operational Research, 164, 354–357. CrossRefGoogle Scholar
  50. Karmarkar, U. S. (1987). Lot sizes, lead times and in-process inventories. Management Science, 33, 409–418. Google Scholar
  51. Karmarkar, U. S. (1989a). Batching to minimize flow times on parallel heterogeneous machines. Management Science, 35, 607–613. Google Scholar
  52. Karmarkar, U. S. (1989b). Capacity loading and release planning with work-in-process (WIP) and lead times. Journal of Manufacturing and Operations Management, 2, 105–123. Google Scholar
  53. Karmarkar, U. S. (1993a). Lot size, manufacturing lead times and utilization. Working paper No. QM8321, Graduate School of Management, University of Rochester. Google Scholar
  54. Karmarkar, U. S. (1993b). Manufacturing lead times, order release and capacity loading. In S. C. Graves, A. Rinnooy Kan & P. Zipkin (Eds.), Logistics of production and inventory. Handbooks in operations research and management science (Vol. 4, pp. 287–329). Amsterdam: North-Holland. Google Scholar
  55. Karmarkar, U. S., Kekre, S., & Kekre, S. (1985a). Lot sizing in multi-item multi-machine job shops. IIE Transactions, 17, 290–298. Google Scholar
  56. Karmarkar, U. S., Kekre, S., Kekre, S., & Freeman, S. (1985b). Lot-sizing and lead-time performance in a manufacturing cell. Interfaces, 15(2), 1–9. Google Scholar
  57. Karmarkar, U. S., Kekre, S., & Kekre, S. (1987). Capacity analysis of a manufacturing cell. Journal of Manufacturing Systems, 6(3), 165–175. CrossRefGoogle Scholar
  58. Kekre, S., & Kekre, S. (1985). Work-in-process considerations in job shop capacity planning. Working paper, GSIA, Carnegie Mellon University. Google Scholar
  59. Kim, J., Leachman, R. C., & Suh, B. (1996). Dynamic release control policy for the semiconductor wafer fabrication lines. Journal of the Operational Research Society, 47, 1516–1525. CrossRefGoogle Scholar
  60. Kim, S., & Uzsoy, R. (2006a). A column generation heuristic for capacity expansion problems. IIE Transactions, to appear. Google Scholar
  61. Kim, S., & Uzsoy, R. (2006b). Exact and heuristic algorithms for capacity expansion problems. Technical report, Laboratory for Extended Enterprises at Purdue, School of Industrial Engineering, Purdue University, West Lafayette. Google Scholar
  62. Krieg, G. (2003). KANBAN—controlled manufacturing systems. PhD thesis, University of Ingolstadt, Ingolstadt. Google Scholar
  63. Land, M. J., & Gaalman, G. J. C. (1996). Workload control concept in job shops: A critical assessment. International Journal of Production Economics, 46/47(11), 535–548. CrossRefGoogle Scholar
  64. Lautenschläger, M. (1999). Mittelfristige Produktionsprogrammplanung mit auslastungsabhängigen Vorlaufzeiten. PhD thesis, University of Darmstadt, Darmstadt. Google Scholar
  65. Lautenschläger, M., & Stadtler, H. (1998). Modelling lead times depending on capacity utilization. Technical report, Technische Hochschule Darmstadt, Darmstadt, Germany. Google Scholar
  66. Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: The bullwhip effect. Management Science, 43, 546–558. Google Scholar
  67. Lin, L., & Cochran, J. K. (1990). Metamodels of production line transient behaviour for sudden machine breakdowns. International Journal of Production Research, 28(10), 1791–1806. Google Scholar
  68. Lu, S. C. H., Ramaswamy, D., & Kumar, P. R. (1994). Efficient scheduling policies to reduce mean and variance of cycle-time in semiconductor manufacturing plants. IEEE Transactions on Semiconductor Manufacturing, 7, 374–388. CrossRefGoogle Scholar
  69. Missbauer, H. (1998). Bestandsregelung als Basis für eine Neugestaltung von PPS-Systemen. PhD thesis, University of Heidelberg, Heidelberg. Google Scholar
  70. Missbauer, H. (2002). Lot sizing in workload control systems. Production Planning & Control, 13(7), 649–664. CrossRefGoogle Scholar
  71. Missbauer, H. (2006a). Models of the transient behaviour of production units to optimize the aggregate material flow. Presented at 21st European conference on operational research, EURO XXI, Iceland, 2–5 July 2006. Google Scholar
  72. Missbauer, H. (2006b). Lead time management and order release in manufacturing planning and control systems. Working Paper, University of Innsbruck. Google Scholar
  73. Odoni, A. R., & Roth, E. (1983). An empirical investigation of the transient behavior of stationary queuing systems. Operations Research, 31(3), 432–455. Google Scholar
  74. Orcun, S., Asmundsson, J. M., Uzsoy, R., Clement, J. P., Pekny, J. F., & Rardin, R. L. (2006a, to appear). Supply chain optimization and protocol environment (SCOPE) for rapid prototyping and analysis of complex supply chains. Production Planning & Control. Google Scholar
  75. Orcun, S., Uzsoy, R., & Kempf, K. (2006b). Using system dynamics simulations to compare capacity models for production planning. In Proceedings of the 2006 winter simulation conference (pp. 1–8). Google Scholar
  76. Ouyang, L., Yeh, N., & Wu, K. (1997). Mixture inventory models with backorders and lost sales for variable lead times. Journal of the Operational Research Society, 47, 829–832. CrossRefGoogle Scholar
  77. Öztürk, A., Kayaligil, S., & Özdemirel, N. E. (2006). Manufacturing lead time estimation using data mining. European Journal of Operational Research, 173(2), 683–700. CrossRefGoogle Scholar
  78. Pahl, J., Voß, S., & Woodruff, D. L. (2005a). Load dependent lead times—from empirical evidence to mathematical modeling. In H. Kotzab, S. Seuring, M. Müller & G. Reiner (Eds.), Research methodologies in supply chain management (pp. 539–554). Heidelberg: Physica. CrossRefGoogle Scholar
  79. Pahl, J., Voß, S., & Woodruff, D. L. (2005b). Production planning with load dependent lead times. 4OR: A Quarterly Journal of Operations Research, 3(4), 257–302. Google Scholar
  80. Philipoom, P. R., & Fry, T. D. (1992). Capacity-based order review/release strategies to improve manufacturing performance. International Journal of Production Research, 30(11), 2559–2572. Google Scholar
  81. Riaño, G. (2002). Transient behavior of stochastic networks: Application to production planning with load-dependent lead times. PhD thesis, Georgia Institute of Technology. Google Scholar
  82. Riaño, G., Serfozo, R., & Hackman, S. (2003a). Modeling random lead times in linear programs: A tutorial. Technical report, COPA Centro de Optimización y Probabilidad Aplicada, Universidad de los Andes and Georgia Institute of Technology. Google Scholar
  83. Riaño, G., Serfozo, R., & Hackman, S. (2003b). A transient little law. Technical report, COPA Centro de Optimización y Probabilidad Aplicada, Universidad de los Andes and Georgia Institute of Technology. Google Scholar
  84. Riaño, G., Serfozo, R., & Hackman, S. (2006). Transient behavior of queuing networks. Technical report, COPA Centro de Optimización y Probabilidad Aplicada, Universidad de los Andes and Georgia Institute of Technology. Google Scholar
  85. Selcuk, B., Fransoo, J. C., & De Kok, A. G. (2005). Work-in-process clearing in supply chain operations planning. Working paper, Department of Technology Management, Technische Universiteit Eindhoven, The Netherlands. Internet source: http://w3.tm.tue.nl/fileadmin/tm/Capaciteitsgroepen/OPAC/ClearingFunction.pdf, last call 25 December 2006.
  86. Selcuk, B., Fransoo, J. C., & De Kok, A. G. (2006). The effect of updating lead times on the performance of hierarchical planning systems. International Journal of Production Economics, 104(2), 427–440. CrossRefGoogle Scholar
  87. Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2002). Designing and managing the supply chain (2nd ed.). Boston: McGraw-Hill. Google Scholar
  88. Spearman, M. L., & Zhang, R. Q. (1999). Optimal lead time policies. Management Science, 45(2), 290–295. Google Scholar
  89. Spearman, M. L., Hopp, W. J., & Woodruff, D. L. (1989). A hierarchical control architecture for CONWIP production systems. Journal of Manufacturing and Operations Management, 2, 147–171. Google Scholar
  90. Spearman, M. L., Woodruff, D. L., & Hopp, W. J. (1990). CONWIP: A pull alternative to Kanban. International Journal of Production Research, 28, 879–894. Google Scholar
  91. Srinivasan, A., Carey, M., & Morton, T. E. (1988). Resource pricing and aggregate scheduling in manufacturing systems. Working paper, GSIA. Google Scholar
  92. Stadtler, H., & Kilger, C. (Eds.). (2005). Supply chain management and advanced planning (3rd ed.). Berlin: Springer. Google Scholar
  93. Stahlman, E. J., & Cochran, J. K. (1998). Dynamic metamodelling in capacity planning. International Journal of Production Research, 36(1), 197–209. CrossRefGoogle Scholar
  94. Suri, R., & Hildenbrant, R. R. (1984). Modeling flexible manufacturing systems using mean value analysis. Journal of Manufacturing Systems, 3, 27–38. CrossRefGoogle Scholar
  95. Tatsiopoulos, I. P., & Kingsman, B. G. (1983). Lead time management. European Journal of Operational Research, 14, 351–358. CrossRefGoogle Scholar
  96. Thonemann, U. W. (2002). Improving supply-chain performance by sharing advance demand information. European Journal of Operational Research, 142, 81–107. CrossRefGoogle Scholar
  97. Upasani, A., & Uzsoy, R. (2005). Integrated production planning and pricing decisions in congestion—prone capacitated production systems. Research report, Laboratory for Extended Enterprises at Purdue, School of Industrial Engineering, Purdue University, West Lafayette. Google Scholar
  98. Uzsoy, R., Lee, C. Y., & Martin-Vega, L. A. (1994). A review of production planning and scheduling models in the semiconductor industry, part II: Shop-floor control. IIE Transactions, 26, 44–55. Google Scholar
  99. Vepsalainen, A. P., & Morton, T. E. (1988). Improving local priority rules with global lead-time estimates: A simulation study. Journal of Manufacturing and Operations Management, 1, 102–118. Google Scholar
  100. Voß, S., & Woodruff, D. L. (2006). Introduction to computational optimization models for production planning in a supply chain (2nd ed.). Berlin: Springer. Google Scholar
  101. Voß, S., & Woodruff, D. L. (2004). A model for multi-stage production planning with load dependent lead times. In R. H. Sprague (Ed.), Proceedings of the 37th annual Hawaii international conference on system science (pp. DTVE03 1–9). Piscataway: IEEE. Google Scholar
  102. Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size model. Management Science, 5, 89–96. Google Scholar
  103. Wiendahl, H., & Wedemeyer, H. (1990). Das Dilemma der Fertigungssteuerung. Zeitschrift für Betriebswirtschaft, 60, 407–422. Google Scholar
  104. Witt, A., & Voß, S. (2005, to appear). Simple heuristics for scheduling with limited intermediate storage. Computers & Operations Research. Google Scholar
  105. Wu, K. (2001). A mixed inventory model with variable lead time and random supplier capacity. Production Planning & Control, 33, 95–106. Google Scholar
  106. Yano, C. A. (1987). Setting planned leadtimes in serial production systems with tardiness costs. Management Science, 33, 95–106. Google Scholar
  107. Yücesan, E., & de Groote, X. (2000). Lead times order release mechanisms, and customer service. European Journal of Operational Research, 120, 118–130. CrossRefGoogle Scholar
  108. Zäpfel, G., & Missbauer, H. (1993a). Production planning and control (PPC) systems including load-oriented order release—problems and research perspectives. International Journal of Production Economics, 30, 107–122. CrossRefGoogle Scholar
  109. Zäpfel, G., & Missbauer, H. (1993b). New concepts for production planning and control. European Journal of Operational Research, 67, 297–320. CrossRefGoogle Scholar
  110. Zhao, X., Xie, J., & Leung, J. (2002). The impact of forecasting model selection on the value of information sharing in a supply chain. European Journal of Operational Research, 142, 321–344. CrossRefGoogle Scholar
  111. Zijm, W. H. M., & Buitenhek, R. (1996). Capacity planning and lead time management. International Journal of Production Economics, 46/47, 165–179. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut für WirtschaftsinformatikUniversität HamburgHamburgGermany
  2. 2.Graduate School of ManagementUC DavisDavisUSA

Personalised recommendations