Annals of Operations Research

, Volume 151, Issue 1, pp 81–98 | Cite as

Bounds for in-progress floating-strike Asian options using symmetry

  • Vicky Henderson
  • David Hobson
  • William Shaw
  • Rafal Wojakowski


This paper studies symmetries between fixed and floating-strike Asian options and exploits this symmetry to derive an upper bound for the price of a floating-strike Asian. This bound only involves fixed-strike Asians and vanillas, and can be computed simply given one of the many efficient methods for pricing fixed-strike Asian options. The bound coincides with the true price until after the averaging has begun and again at maturity. The bound is compared to benchmark prices obtained via Monte Carlo simulation in numerical examples.


Asian options Floating strike Asian options Put call symmetry Bounds Change of numéraire 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bouaziz, L., E. Briys, and M. Crouhy. (1994). “The Pricing of Forward-Starting Asian Options.” Journal of Banking and Finance, 18, 823–839.CrossRefGoogle Scholar
  2. Carr, P. and M. Schröder. (2000). “On the Valuation of Arithmetic-Average Asian Options: The Geman-Yor Laplace Transform Revisited.” Universität Mannheim working paper.Google Scholar
  3. Chung, S.L., M. Shackleton, and R. Wojakowski. (2003). “Efficient Quadratic Approximation of Floating Strike Asian Option Values.” Revue Finance, 24(1).Google Scholar
  4. Conze, A. and Visvanathan. (1991). “European Path Dependent Options: The Case of Geometric Averages.” Finance, 12(1), 7–22.Google Scholar
  5. Corwin, J., P. Boyle, and K. Tan. (1996). “Quasi Monte Carlo Method in Numerical Finance.” Management Science, 42, 926–938.Google Scholar
  6. Curran, M. (1994). “Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price.” Management Science, 40(12), 1705–1711.Google Scholar
  7. Donati-Martin, C., R. Ghomrasni, and M. Yor. (2001). “On certain Markov Processes Attached to Exponential Functions of Brownian Motion: Applications to Asian Options.” Revista Matematica Iberoamericana, 17, 179–193.Google Scholar
  8. Dufresne, D. (1990). “The Distribution of a Perpetuity with Applications to Risk Theory and Pension Funding.” Scandinavian Actuarial Journal, 39–79.Google Scholar
  9. Eberlein, E. and A. Papapantoleon. (2005). “Equivalence of Floating and Fixed Strike Asian and Lookback Options.” Stochastic Processes and Their Applications, 115, 31–40.CrossRefGoogle Scholar
  10. Fu, M.C., D.B. Madan, and T. Wang. (1999). “Pricing Continuous Asian Options: A Comparision of Monte Carlo and Laplace Tranform Inversion Methods.” Journal of Computational Finance, 2(2), 49–74.Google Scholar
  11. Geman, H. and M. Yor. (1993). “Bessel Processes, Asian Options and Perpetuities.” Mathematical Finance, 3(4), 349–375.CrossRefGoogle Scholar
  12. Henderson, V. and R. Wojakowski. (2002). “On the Equivalence of Fixed and Floating-Strike Asian Options.” Journal of Applied Probability, 39(2), 391–394.CrossRefGoogle Scholar
  13. Hoogland, J.K and C.D.D. Neumann. (2000). “Asians and Cash Dividends: Exploiting Symmetries in Pricing Theory.” Preprint, CWI, The Netherlands.Google Scholar
  14. Ingersoll, J. (1987). “Theory of Financial Decision Making.” Rowman and Littlefield.Google Scholar
  15. Linetsky, V. (2004). “Spectral Expansions for Asian (Average Price) Options.” Operations Research, 52, 856–867.CrossRefGoogle Scholar
  16. Marcozzi, M.D. (2003). “On the Valuation of Asian Options by Variational Methods.” SIAM Journal of Scientific Computing, 24(4), 1124–1140.CrossRefGoogle Scholar
  17. Matsumoto, M. and T. Nishimura. (1998). “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator.” ACM Transcations on Modeling and Computer Simulation, 8(1), 3–30.CrossRefGoogle Scholar
  18. Nielsen, J.A. and K. Sandmann. (2003). “Pricing Bounds on Asian Options.” Journal of Financial and Quantitative Analysis, 38(2).Google Scholar
  19. Ritchken, P., L. Sankarasubramanian, and A.M. Vijh. (1993). “The Valuation of Path Dependent Contracts on the Average.” Management Science, 39(10), 1202–1213.CrossRefGoogle Scholar
  20. Rogers, L.C.G. and Shi, Z. (1995). “The Value of An Asian Option.” Journal of Applied Probability, 32(4), 1077–1088.CrossRefGoogle Scholar
  21. Schröder, M. (2002). “On the Valuation of Arithmetic-Average Asian Options: Laguerre Series and Theta Integrals.” Universität Mannheim working paper.Google Scholar
  22. Shaw, W.T. (2000). “A Reply to Pricing Continuous Asian Options by Fu, Madan and Wang.” Working Paper.Google Scholar
  23. Shaw, W.T. (2002). “Accurate Pricing of Asian Options by Contour Integration Including Efficient Methods for Low Volatility.” Working Paper.Google Scholar
  24. Vanmaele, M., G. Deelstra, J. Liinev, J. Dhaene, and M.J. Goovaerts. (2005). “Bounds for the Price of Discretely Sampled Arithemetic Asian Options.” To appear in Journal of Computational and Applied Mathematics.Google Scholar
  25. Vecer, J. (2001). “A New PDE Approach for Pricing Arithmetic Asian Options.” Journal of Computational Finance, 4(4), 105–113.Google Scholar
  26. Vecer, J. (2002). “Unified Asian Pricing.” RISK, June, pp. 113–116.Google Scholar
  27. Vyncke, D., M. Goovaerts, and J. Dhaene. (2003). “An Accurate Analytical Approximation for the Price of a European-Style Arithmetic Asian Option.” Proceedings of the Seventh International Congress on Insurance: Mathematics and Economics, Lyon.Google Scholar
  28. Yor, M. (2001). “Exponential Functionals of Brownian Motion and Related Processes.” New York: Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Vicky Henderson
    • 1
  • David Hobson
    • 2
  • William Shaw
    • 3
  • Rafal Wojakowski
    • 4
  1. 1.ORFE and Bendheim Center for Finance, E-QuadPrinceton UniversityPrincetonUSA
  2. 2.Department of Mathematical SciencesUniversity of BathBathUK
  3. 3.Department of MathematicsKing”s College London, StrandLondonUK
  4. 4.Department of Accounting and Finance Management SchoolLancaster UniversityLancasterUK

Personalised recommendations