Annals of Operations Research

, Volume 147, Issue 1, pp 269–286 | Cite as

On the cardinality of the Pareto set in bicriteria shortest path problems

  • Matthias Müller-HannemannEmail author
  • Karsten Weihe


Computing shortest paths with two or more conflicting optimization criteria is a fundamental problem in transportation and logistics. We study the problem of finding all Pareto-optimal solutions for the multi-criteria single-source shortest-path problem with nonnegative edge lengths. The standard approaches are generalizations of label-setting (Dijkstra) and label-correcting algorithms, in which the distance labels are multi-dimensional and more than one distance label is maintained for each node. The crucial parameter for the run time and space consumption is the total number of Pareto optima. In general, this value can be exponentially large in the input size. However, in various practical applications one can observe that the input data has certain characteristics, which may lead to a much smaller number—small enough to make the problem efficiently tractable from a practical viewpoint. For typical characteristics which occur in various applications we study in this paper whether we can bound the size of the Pareto set to a polynomial size or not. These characteristics are also evaluated (1) on a concrete application scenario (computing the set of best train connections in view of travel time, fare, and number of train changes) and (2) on a simplified randomized model. It will turn out that the number of Pareto optima on each visited node is restricted by a small constant in our concrete application, and that the size of the Pareto set is much smaller than our worst case bounds in the randomized model.


Multi-criteria optimization Pareto search Shortest paths Railway networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brumbaugh-Smith, J. and D. Shier. (1989). “An Empirical Investigation of Some Bicriterion Shortest Path algorithms.” European Journal of Operations Research, 43, 216–224.Google Scholar
  2. Climaco, J.C.N. and E.Q.V. Martins. (1982). “A Bicriterion Shortest Path Algorithm.” European Journal of Operations Research, 11, 399–404.CrossRefGoogle Scholar
  3. Ehrgott, M. and X. Gandibleux. (2000). “An Annotated Biliography of Multiobjective Combinatorial Optimization.” OR Spektrum, 22, 425–460.Google Scholar
  4. Ehrgott, M. and X. Gandibleux (Eds.) (2002). “Multiple Criteria Optimization: State of the Art Annotated Bibliographic Survey.” Kluwer Academic Publishers, Boston.Google Scholar
  5. Eppstein, D. (1999). “Finding the k Shortest Paths.” SIAM Journal on Computing, 28, 652–673.CrossRefGoogle Scholar
  6. Hansen, P. (1979). “Bicriteria Path Problems.” In G. Fandel and T. Gal (Eds.), Multiple Criteria Decision Making Theory and Applications, vol. 177 of Lecture Notes in Economics and Mathematical Systems, pp. 109–127. Springer Verlag, Berlin.Google Scholar
  7. Jahn, O, R.H. Möhring, and A.S. Schulz. (2000). “Optimal Routing of Traffic Flows with Length Restrictions.” In K. Inderfurth et al. (ed.), Operations Research Proceedings 1999, pp. 437–442. Springer.Google Scholar
  8. Mehlhorn, K. and G. Schäfer. (2001). “A Heuristic for Dijkstra’s Algorithm with Many Targets and its use in Weighted Matching Algorithms.” In Proceedings of 9th Annual European Symposium on Algorithms (ESA’2001), vol. 2161 of Lecture Notes in Computer Science, pp. 242–253. Springer.Google Scholar
  9. Mehlhorn, K. and M. Ziegelmann. (2000). “Resource Constrained Shortest Paths.” In Proceedings of 8th Annual European Symposium on Algorithms (ESA’2000), vol. 1879 of Lecture Notes in Computer Science, pp. 326–337. Springer.Google Scholar
  10. Mehlhorn, K. and M. Ziegelmann. (2001). “CNOP—a Package for Constrained Network Optimization.” In 3rd Workshop on Algorithm Engineering and Experiments (ALENEX’01), vol. 2153 of Lecture Notes in Computer Science, pp. 17–31. Springer.Google Scholar
  11. Mote, J., I. Murthy, and D.L. Olson. (1991). “A Parametric Approach to Solving Bicriterion Shortest Path Problems.” European Journal of Operations Research, 53, 81–92.CrossRefGoogle Scholar
  12. Schulz, F., D. Wagner, and K. Weihe. (2000). “Dijkstra’s Algorithm on-line: An Empirical Case Study from Public Railroad Transport.” ACM Journal of Experimental Algorithmics, 5, Article 12.Google Scholar
  13. Skriver, A.J.V. (2000). “A Classification of Bicriterion Shortest path (bsp) Algorithms.” Asia-Pacific Journal of Operations Research, 17, 199–212.Google Scholar
  14. Skriver, A.J.V. and K.A. Andersen. (2000). “A Label Correcting Approach for Solving Bicriterion Shortest path Problems.” Computers and Operations Research, 27, 507–524.CrossRefGoogle Scholar
  15. Theune, D. (1995). “Robuste und Effiziente Methoden zur Lösung von Wegproblemen.” Teubner Verlag, Stuttgart.Google Scholar
  16. Warburton, A. (1987). “Approximation of Pareto Optima in Multiple-Objective shortest path problems.” Operations Research, 35, 70–79.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Technische Universität DarmstadtFachbereich Informatik—AlgorithmikDarmstadtGermany

Personalised recommendations