Annals of Operations Research

, Volume 147, Issue 1, pp 199–216 | Cite as

A multicriteria approach for optimizing bus schedules and school starting times

  • Armin FügenschuhEmail author
  • Alexander Martin


In many rural counties pupils on their way to school are a large, if not the largest group of customers for public mass transit. Hence an effective optimization of public mass transit in these regions must include the traffic caused by pupils. Besides a change in the schedules of the buses and the starting times of the trips, the school starting time may become an integral part of the planning process. We discuss the legal framework for this optimization problem in German states and counties and present a multi-objective mixed-integer linear programming formulation for the simultaneous specification of school and trip starting times. For its solution, we develop a two-stage decomposition heuristic and apply it to practical data sets from three different rural German counties.


Multicriteria optimization Mixed-integer programming Multiple traveling salesman problem Time windows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bodin, L. and L. Berman. (1979). “Routing and Scheduling of School Buses by Computer.” Transportation Science, 13(2), 113–129.CrossRefGoogle Scholar
  2. Bowerman, R.L., G.B. Hall, and P.H. Calamai. (1995). “A Multi-Objective Optimisation Approach to School Bus Routing Problems.” Transportation Research A, 28(5), 107–123.Google Scholar
  3. Braca, J., J. Bramel, B. Posner, and D. Simchi-Levi. (1997). “A Computerized Approach to the New York City School Bus Routing Problem.” IIE Transactions, 29, 693–702.Google Scholar
  4. Corberan, A., E. Fernandez, M. Laguna, and R. Marti. (2000). “Heuristic Solutions to the Problem of Routing School Buses with Multiple Objectives.” Technical Report TR08-2000, Department of Statistics and OR, University of Valencia.Google Scholar
  5. Desaulniers, G., J. Lavigne, and F. Soumis. (1998). “Multi-Depot Vehicle Scheduling with Time Windows and Waiting Costs.” European Journal of Operational Research, 111(3), 479–494.CrossRefGoogle Scholar
  6. Ehrgott, M. (2000). Multicriteria Optimization. Springer Verlag, Heidelberg.Google Scholar
  7. Ferland, J.A. and L. Fortin. (1989). “Vehicles Scheduling with Sliding Time Windows.” European Journal of Operational Research, 38(2), 213–226.CrossRefGoogle Scholar
  8. Hinweise zur Schulorganisation für allgemein bildende Schulen. Verwaltungsvorschrift des Ministeriums für Bildung, Wissenschaft und Kultur vom 21. Juli 2000. Aus: Mitteilungsblatt des Ministeriums für Bildung, Wissenschaft und Kultur Mecklenburg-Vorpommern, Nr. 8/2000, 362–365. (In German).Google Scholar
  9. ILOG CPlex Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Information available at URL
  10. Löbel, A. (1997). Optimal Vehicle Scheduling in Public Transit. Shaker Verlag, Aachen.Google Scholar
  11. Nemhauser, G. and L. Wolsey. (1988). Integer and Combinatorial Optimization. Wiley Interscience, New York.Google Scholar
  12. Satzung über die Anerkennung der notwendigen Kosten für die Schülerbeförderung des Landkreises Demmin. Aus: Kreisanzeiger des Landkreises Demmin, Nr. 6/97. Amtliche Mitteilungen und Informationen, 7–8. (In German).Google Scholar
  13. Schulgesetz Mecklenburg-Vorpommern vom. 15.05.1996. Stand Feb. 2000, 68. (In German).Google Scholar
  14. Stöveken, P. (2000). “Wirtschaftlicherer Schulverkehr: öPNV-Optimierung mit erfolgsabhängiger Honorierung.” Der Nahverkehr, 3, 65–68. (In German).Google Scholar
  15. Toth, P. and D. Vigo. (2002). “The Vehicle Routing Problem.” SIAM Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Darmstadt University of TechnologyDarmstadtGermany

Personalised recommendations