Advertisement

Annals of Operations Research

, Volume 147, Issue 1, pp 143–174 | Cite as

MCS—A new algorithm for multicriteria optimisation in constraint programming

  • F. Le HuédéEmail author
  • M. Grabisch
  • C. Labreuche
  • P. Savéant
Article

Abstract

In this paper we propose a new algorithm called MCS for the search for solutions to multicriteria combinatorial optimisation problems. To quickly produce a solution that offers a good trade-off between criteria, the MCS algorithm alternates several Branch & Bound searches following diversified search strategies. It is implemented in CP in a dedicated framework and can be specialised for either complete or partial search.

Keywords

Multicriteria optimization Multicriteria decision making Constraint programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PLATON Team (2001). “Eclair Reference Manual, Version 6.” Technical Report Platon-01.16, THALES Research and Technology, Orsay, France.Google Scholar
  2. Bana e Costa, C.A. and J.C. Vansnick. (1994). “A Theoretical Framework for Measuring Attractiveness by a Categorical Based Evaluation TecHnique (MACBETH).” In Proc. XIth Int. Conf. on MCDM, pp. 15–24. Coimbra, Portugal.Google Scholar
  3. Barichard, V. and J.-K. Hao. (2003). “A Population and Interval Constraint Propagation Algorithm.” In LNCS 2632, pp. 88–101. Springer.Google Scholar
  4. Beldiceanu, N., E. Bourreau, H. Simonis, and D. Rivreau. (1997). “Partial Search Strategy in CHIP.” In Proc. 2nd Int. Conf. on Meta-Heuristics. Sophia-Antipolis, France.Google Scholar
  5. Chankong, V. and Y.Y. Haimes. (1983). Multiobjective Decision Making: Theory and Methodology. North-Holland.Google Scholar
  6. Choquet, G. (1953). “Theory of capacities.” Annales de l’Institut Fourier, 5, 131–295.Google Scholar
  7. de Givry, S. and L. Jeannin. (2003). “TOoLS: A Library for Partial and Hybrid Search Methods.” In Proceedings of CP-AI-OR’03, Montral. Canada.Google Scholar
  8. Ehrgott, M. and X. Gandibleux (Eds.) (2002). Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Boston: Kluwer Academic Publishers. ISBN 1-4020-7128-0.Google Scholar
  9. Focacci, F. and D. Godard. (2002) “A Practical Approach to Multi-Criteria Optimization Problems in Constraint Programming.” In N. Jussien and F. Laburthe (Eds.), In Proceedings of CP-AI-OR’02, pp. 65–75, Le Croisic, France.Google Scholar
  10. Gavanelli, M. (2002). “An Algorithm for Multi-Criteria Optimization in CSPs.” In Frank van Harmelen, (Ed), In Proceedings of ECAI-2002. pp. 136–140. Lyon, France, IOS Press.Google Scholar
  11. Ginsberg, M.L. (1993). “Dynamic Backtracking.” Journal of Artificial Intelligence Research, 1, 25–46Google Scholar
  12. Ginsberg, M.L. and W.D. Harvey. (1992). “Iterative Broadening.” Artificial Intelligence, 55, 367–383.CrossRefGoogle Scholar
  13. Gomes, C.P., B. Selman, and H. Kautz. (1998) “Boosting Combinatorial Search Through Randomization.” In Proc. of AAAI-98, Madison, WI.Google Scholar
  14. Grabisch. M. (1995). “Fuzzy Integral in Multicriteria Decision Making.” Fuzzy Sets & Systems, 69, 279–298.CrossRefGoogle Scholar
  15. Grabisch, M. (1996). “The Application of Fuzzy Integrals in Multicriteria Decision Making.” European J. of Operational Research, 89, 445–456.CrossRefGoogle Scholar
  16. Grabisch, M. (1997). “Alternative Representations of Discrete Fuzzy Measures for Decision Making.” Int. J. of Uncertainty, Fuzziness, and Knowledge Based Systems, 5, 587–607.CrossRefGoogle Scholar
  17. Grabisch, M. and C. Labreuche. (2001). “How to Improve Acts: An Alternative Representation of the Importance of Criteria in MCDM.” Int. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems, 9(2), 145–157.Google Scholar
  18. Grabisch, M., T. Murofushi, and M. Sugeno. (2000). Fuzzy Measures and Integrals. Theory and Applications (edited volume). Studies in Fuzziness. Physica Verlag.Google Scholar
  19. Grabisch, M. and M. Roubens. (2000). “Application of the Choquet Integral in Multicriteria Decision Making.” In M. Grabisch, T. Murofushi, and M. Sugeno (Eds.), Fuzzy Measures and Integrals—Theory and Applications, pp. 348–374. Physica Verlag.Google Scholar
  20. Harvey, W.D. and M.L. Ginsberg. (1995). “Limited Discrepancy Search.” In C.S. Mellish (Ed.), Proc. of IJCAI-95, pp. 607–613. Montréal Canada, Morgan Kaufmann.Google Scholar
  21. Junker, U. (2002). “Preference-Based Search and Multi-Criteria Optimization.” In Proceedings of AAAI-02, pp. 34–40. Edmonton, Alberta, Canada.Google Scholar
  22. Keeney, R.L. and H. Raiffa. (1976). Decision with Multiple Objectives. New York: Wiley.Google Scholar
  23. C. Labreuche. (2004). “Determination of the Criteria to be Improved First in Order to Improve as Much as Possible the Overall Evaluation.” In Proceeding of IPMU 2004, pp. 609–616. Perugia, Italy.Google Scholar
  24. Labreuche, C. and M. Grabisch. (2003). “The Choquet Integral for the Aggregation of Interval Scales in Multicriteria Decision Making.” Fuzzy Sets and Systems, 137(1), 11–26.CrossRefGoogle Scholar
  25. Le Huédé, F. (2003). “Intégration d’un modèle d’Aide à la Décision Multicritère en Programmation Par Contraintes.” PhD thesis, Universitée Paris 6.Google Scholar
  26. Le Huédé, F., P. Gérard, M. Grabisch, C. Labreuche, and P. Savéant. (2002). “Integration of a Multicriteria Decision Model in Constraint Programming.” In B. Brabble, J. Koehler, and I. Refanidis, (Eds.), In Proceedings of the AIPS’02 Workshop on Planning and Scheduling with Multiple Criteria, pp. 15–20. Toulouse, France.Google Scholar
  27. Lhomme, O. (1993). “Consistency Techniques for Numerical CSPs.” In Proceedings of IJCAI 1993, pp. 232–238. Chambery, France.Google Scholar
  28. Marichal, J.L. (1998). “Aggregation Operators for Multicriteria Decision Aid.” PhD thesis, University of Liège.Google Scholar
  29. Lee, S.Y., M.W. Carter, and G. Laporte. (1996). “Examination Timetabling: Algorithmic Strategies and Applications.” Journal of the Operational Research Society, 47, 373–383.Google Scholar
  30. Shaw, P. (1998). “Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems.” In Proc. of CP-98, pp. 417–431, Pisa, Italy.Google Scholar
  31. Sugeno, M. (1974). “Theory of Fuzzy Integrals and its Applications.” PhD thesis, Tokyo Institute of TechnologyGoogle Scholar
  32. Walsh, T. (1997). Depth-Bounded Discrepancy Search. In Proc. of IJCAI-97, pp. 1388–1395, Nagoya, Japan.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • F. Le Huédé
    • 1
    Email author
  • M. Grabisch
    • 2
  • C. Labreuche
    • 1
  • P. Savéant
    • 1
  1. 1.THALES Research and Technology Francedomaine de CorbevilleOrsay cedexFrance
  2. 2.LIP 6, Université Pierre et Marie Curie (UPMC)Université Paris I Panthéon-SorbonneParisFrance

Personalised recommendations