Advertisement

Annals of Operations Research

, Volume 147, Issue 1, pp 43–70 | Cite as

An improved algorithm for solving biobjective integer programs

  • Ted K. RalphsEmail author
  • Matthew J. Saltzman
  • Margaret M. Wiecek
Article

Abstract

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version that provides access to all Pareto outcomes. Extensive computational tests on instances of the biobjective knapsack problem and a capacitated network routing problem are presented.

Keywords

Knapsack Problem Ideal Point Level Line Pareto Point Feasible Outcome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksoy, Y. (1990). “An Interactive Branch-and-Bound Algorithm for Bicriterion Nonconvex/Mixed Integer Programming.” Naval Research Logistics, 37(3), 403–417.Google Scholar
  2. Alves, M.J. and J. Climaco. (1999). “Using Cutting Planes in An Interactive Reference Point Approach for Multiobjective Integer Linear Programming Problems.” European Journal of Operational Research, 117, 565–577.CrossRefGoogle Scholar
  3. Alves, M.J. and J. Climaco. (2000). “An Interactive Reference Point Approach for Multiobjective Mixed-Integer Programming Using Branch-and-Bound.” European Journal of Operational Research, 124, 478–494.CrossRefGoogle Scholar
  4. Bhaskar, K. (1979). “A Multiple Objective Approach to Capital Budgeting.” Accounting and Business Research, 9, 25–46.Google Scholar
  5. Bitran, G.R. (1977). “Linear Multiple Objective Programs with Zero-One Variables.” Mathematical Programming, 13, 121–139.CrossRefGoogle Scholar
  6. Bitran, G.R. (1979). “Theory and Algorithms for Linear Multiple Objective Programs with Zero-One Variables.” Mathematical Programming, 17, 362–390.CrossRefGoogle Scholar
  7. Bowman, V.J. (1976). “On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives.” In H. Thieriez (ed.), Multiple Criteria Decision Making, Springer, Berlin, pp. 248–258.Google Scholar
  8. Chalmet, L.G., L. Lemonidis, and D.J. Elzinga. (1986). “An Algorithm for the Bi-Criterion Integer Programming Problem.” European Journal of Operational Research, 25, 292–300.CrossRefGoogle Scholar
  9. Climaco, J., C. Ferreira, and M.E. Captivo. (1997). “Multicriteria Integer Programming: An Overview of Different Algorithmic Approaches.” In J. Climaco (ed.), Multicriteria Analysis, Springer, Berlin, pp. 248–258.Google Scholar
  10. COIN-OR Foundation. (2006) Computational infrastructure for operations research. http://www.coin-or.org.
  11. Ehrgott, M. and X. Gandibleux. (2000). “A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization.” OR Spektrum, 22, 425–460.Google Scholar
  12. Ehrgott, M. and X. Gandibleux. (2002). “Multiobjective Combinatorial Optimization—Theory, Methodology and Applications.” In M. Ehrgott and X. Gandibleux (eds.), Multiple Criteria Optimization—State of the Art Annotated Bibliographic Surveys, Kluwer Academic Publishers, Boston, MA, pp. 369–444.Google Scholar
  13. Ehrgott, M. and M.M. Wiecek. (2005). “Multiobjective Programming.” In M. Ehrgott, J. Figueira, and S. Greco (eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer, Berlin, Germany, pp. 667–722.CrossRefGoogle Scholar
  14. Eswaran, P.K., A. Ravindran, and H. Moskowitz. (1989). “Algorithms for Nonlinear Integer Bicriterion Problems.” Journal of Optimization Theory and Applications, 63(2), 261–279.CrossRefGoogle Scholar
  15. Ferreira, C., J. Climaco, and J. Paixão. (1994). “The Location-Covering Problem: A Bicriterion Interactive Approach.” Investigación Operativa, 4(2), 119–139.Google Scholar
  16. Gandibleaux, X. (2006). “MCDM Numerical Instances Library.” http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOKP.html.
  17. Geoffrion, A.M. (1968). “Proper Efficiency and the Theory of Vector Maximization.” Journal of Mathematical Analysis and Applications, 22, 618–630.CrossRefGoogle Scholar
  18. Hultberg, T.H. (2003). “A Presentation of FlopC+ < eqid1 > +. http://projects.coin-or.org/FlopC++.
  19. Kaliszewski, I. (2000). “Uisng Tradeoff Information in Decision-Making Algorithms.” Computers and Operations Research, 27, 161–182.CrossRefGoogle Scholar
  20. Kaliszewski, I. (2003). “Dynamic Parametric Bounds on Efficient Outcomes in Interactive Multiple Criteria Decision Making Problems.” European Journal of Operational Research, 147, 94–107.CrossRefGoogle Scholar
  21. Kaliszewski, I. and W. Michalowski. (1997). “Efficient Solutions and Nounds on Tradeoffs.” Journal of Optimization Theory and Applications, 94(2), 381–394.CrossRefGoogle Scholar
  22. Karaivanova, J., P. Korhonen, S. Narula, J. Wallenius, and V. Vassilev. (1995). “A Reference Direction Approach to Multiple Objective Integer Linear Programming.” European Journal of Operational Research, 81, 176–187.CrossRefGoogle Scholar
  23. Karaivanova, J., S. Narula, and V. Vassilev. (1993). “An Interactive Procedure for Multiple Objective Integer Linear Programming Problems.” European Journal of Operational Research, 68(3), 344–351.CrossRefGoogle Scholar
  24. Karaskal, K. and M. Köksalan. (2001). “Generating a Representative Subset of the Efficient Frontier in Multiple Criteria Decision Analysis.” Working Paper 01-20, Faculty of Administration, University of Ottawa.Google Scholar
  25. Kere, P. and J. Koski. (2002). “Multicriterion Optimization of Composite Laminates for Maximum Failure Margins with an Interactive Descent Algorithm.” Structural and Multidisciplinary Optimization, 23(6), 436–447.CrossRefGoogle Scholar
  26. Klamroth, K., J. Tind, and M.M. Wiecek. (2002). “Unbiased Approximation in Multicriteria Optimization.” Mathematical Methods of Operations Research, 56, 413–437.Google Scholar
  27. Klein, D. and E. Hannan. (1982). “An Algorithm for the Multiple Objective Integer Linear Programming Problem.” European Journal of Operational Research, 93, 378–385.CrossRefGoogle Scholar
  28. Kostreva, M.M., Q. Zheng, and D. Zhuang. (1995). “A Method for Approximating Solutions of Multicriteria Nonlinear Optimization Problems.” Optimization Methods and Software, 5, 209–226.CrossRefGoogle Scholar
  29. Ladányi, L., et al. (2006). Coin-Or Utility Library. http://projects.coin-or.org/CoinUtils.
  30. Lee, H. and S. Pulat. (1993). “Bicriteria Network Flow Problems: Integer Case.” European Journal of Operational Research, 66, 148–157.CrossRefGoogle Scholar
  31. Lougeee-Heimer, R., et al. (2006). Cut Generation Library. http://projects.coin-or.org/Cgl.
  32. Makhorin, A. (2004) “Introduction to GLPK.” http://www.gnu.org/software/glpk.
  33. Mavrotas, G. and D. Diakoulaki. (1998). “A Branch and Bound Algorithm for Mixed Zero-One Multiple Objective Linear Programming.” European Journal of Operational Research, 107(3), 530–541.CrossRefGoogle Scholar
  34. Narula, S.C. and V. Vassilev. (1994). “An Interactive Algorithm for Solving Multiple Objective Integer Linear Programming Problems.” European Journal of Operational Research, 79(3), 443–450.CrossRefGoogle Scholar
  35. Neumayer, P. and D. Schweigert. (1994). “Three Algorithms for Bicriteria Integer Linear Programs.” OR Spectrum, 16, 267–276.Google Scholar
  36. Pasternak, H. and U. Passy. (1973). “Bicriterion Mathematical Programs with Boolean Variables.” In J.L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, University of South Carolina Press, pp. 327–348.Google Scholar
  37. Ralphs, T.K. Library of vehicle routing problem instances. www.BranchAndCut.org/VRP/data.
  38. Ralphs, T.K. (2004). “SYMPHONY Version 5.0 User’s Manual.” Technical Report 04T-011, Lehigh University Industrial and Systems Engineering.Google Scholar
  39. Ralphs, T.K. and J.C. Hartman. (2001). “Capacitated Network Routing (A Preliminary Progress Report).” Technical Report 01W-009, Lehigh University Industrial and Systems Engineering.Google Scholar
  40. Ralphs, T.K. and M. Guzelsoy. (2005). “The SYMPHONY Callable Library for Mixed-Integer Linear Programming.” In Proceedings of the Ninth INFORMS Computing Society Conference, pp. 61–76.Google Scholar
  41. Ramesh, R., M.H. Karwan, and S. Zionts. (1989). “Preference Structure Representation Using Convex Cones in Multicriteria Integer Programming.” Management Science, 35(9), 1092–1105.CrossRefGoogle Scholar
  42. Ramesh, R., M.H. Karwan, and S. Zionts. (1990). “An Interactive Method for Bicriteria Integer Programming.” IEEE Transcations on Systems, Man, and Cybernetics, 20(2), 395–403.CrossRefGoogle Scholar
  43. Ramesh, R., M.H. Karwan, and S. Zionts. (1991). “Interactive Bicriteria Integer Programming: A Performance Analysis.” In M. Fedrizzi, J. Kacprzyk, and M. Roubens (eds.), Interactive Fuzzy Optimization and Mathematical Programming, volume 368 of Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, pp. 92–100.Google Scholar
  44. Ruzika, S. and M.M. Wiecek. (2005). “Survey Paper: Approximation Methods in Multiobjective Programming.” Journal of Optimization Theory and Applications, 126(3), 473–501.Google Scholar
  45. Saltzman, M., et al. (2006). Open Solver Interface. http://projects.coin-or.org/Osi.
  46. Schandl, B., K. Klamroth, and M.M. Wiecek. (2001). “Norm-Based Approximation in Bicriteria Programming.” Computational Optimization and Applications, 20(1), 23–42.CrossRefGoogle Scholar
  47. Sedeño Noda, A. and C. González-Martín. (2001). “An Algorithm for the Biobjective Integer Minimum Cost Flow Porblem.” Computers and Operations Research, 28, 139–156.CrossRefGoogle Scholar
  48. Shin, W.S. and D.B. Allen. (1994). “An Interactive Paired-Comparison Method for Bicriterion Integer Programming.” Naval Research Logistics, 41(3), 423–434.CrossRefGoogle Scholar
  49. Solanki, R. (1991). “Generating the Noninferior Set in Mixed Integer Biobjective Linear Programs: An Application to a Location Problem.” Computers and Operations Research, 18, 1–15.CrossRefGoogle Scholar
  50. Steuer, R.E. (1986). Multiple Criteria Optimization: Theory, Computation and Application. John Wiley & Sons, New York.Google Scholar
  51. Steuer, R.E. and E.-U. Choo. (1983). “An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming.” Mathematical Programming, 26, 326–344.CrossRefGoogle Scholar
  52. Vasko, F.J., R.S. Barbieri, B.Q. Rieksts, K.L. Reitmeyer, and K.L. Stott, Jr. (2002). “The Cable Trench Problem: Combining the Shortest Path and Minimum Spanning Tree Problems.” Comput. Oper. Res., 29(5), 441–458.CrossRefGoogle Scholar
  53. Villarreal, B. and M.H. Karwan. (1981). “Multicriteria Integer Programming: A (Hybrid) Dynamic Programming Recursive Approach.” Mathematical Programming, 21, 204–223.CrossRefGoogle Scholar
  54. Villarreal, B. and M.H. Karwan. (1982) “Multicriteria Dynamic Programming with An Application to the Integer Case.” Journal of Mathematical Analysis and Applications, 38, 43–69.Google Scholar

Copyright information

© Springer Science &#x002B; Business Media, LLC 2006

Authors and Affiliations

  • Ted K. Ralphs
    • 1
    Email author
  • Matthew J. Saltzman
    • 2
  • Margaret M. Wiecek
    • 2
  1. 1.Department of Industrial and Systems EngineeringLehigh UniversityBethlehemUSA
  2. 2.Department of Mathematical SciencesClemson UniversityClemsonUSA

Personalised recommendations