Annals of Operations Research

, Volume 146, Issue 1, pp 105–117 | Cite as

Experiments on data reduction for optimal domination in networks

  • Jochen Alber
  • Nadja Betzler
  • Rolf NiedermeierEmail author


We present empirical results on computing optimal dominating sets in networks by means of data reduction through efficient preprocessing rules. Thus, we demonstrate the usefulness of so far only theoretically considered data reduction techniques for practically solving one of the most important network problems in combinatorial optimization.


Experimental study Domination NP-complete problem Preprocessing by data reduction rules Optimal solutions Network optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alber, J. (2003). Exact Algorithms for NP-hard Problems on Networks: Design, Analysis, and Implementation. PhD thesis, WSI für Informatik, Universität Tübingen, Germany.Google Scholar
  2. Alber, J., H.L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. (2002).“Fixed Parameter Algorithms for Dominating Set and Related Problems on Planar Graphs.” Algorithmica, 33(4), 461–493.CrossRefGoogle Scholar
  3. Alber, J., H. Fan, M.R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond, and U. Stege. (2005).“ A Refined Search Tree Technique for Dominating Set on Planar Graphs. ” Journal of Computer and System Sciences 71(4), 385–405.Google Scholar
  4. Alber, J., M.R. Fellows, and R. Niedermeier. (2004).“Polynomial Time Data Reduction for Dominating Set.” Journal of the ACM, 51(3), 363–384.CrossRefGoogle Scholar
  5. Bader, G.D., I. Donaldson, C. Wolting, B.F.F. Quellette, T. Pawson, and C.W.V. Hogue. (2001).“BIND—The Biomolecular Interaction Network Database.” Nucleic Acids Research, 29(1), 242–245.CrossRefGoogle Scholar
  6. Chen, J., H. Fernau, I.A. Kanj, and G. Xia. (2005). “Parametric Duality and Kernelization: Lower Bounds and upper Bounds on Kernel Size.” In Proc. 22d STACS, vol. 3404 of LNCS, Springer, pp. 269–280.Google Scholar
  7. Chen, Q., H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. (2002).“The Origin of Power-Laws in Internet Topologies Revisited.” In Proc. of INFOCOM.Google Scholar
  8. Demaine, E.D. and M. Hajiaghayi. (2005).“Bidimensionality: New Connections Between FPT Algorithms and PTASs.” In Proc. 16th SODA, ACM/SIAM, pp. 590–601.Google Scholar
  9. Feige, U. (1998).“A Threshold of ln n for Approximating Set Cover.” Journal of the ACM, 45(4):634–652.CrossRefGoogle Scholar
  10. Fomin, F.V. and D.M Thilikos. (2003).“Dominating Sets in Planar Graphs: Branch-Width and Exponential Speed-Up.” In Proc. 14th SODA, ACM/SIAM, pp. 168–177.Google Scholar
  11. Garey, M.R. and D.S. Johnson. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman.Google Scholar
  12. Guo, J., R. Niedermeier, and D. Raible. (2005).“Improved Algorithms and Complexity Results for Power Domination in Graphs.” In Proc. 15th FCT, volume 3623 of LNCS. Springer pp. 172–184.Google Scholar
  13. Haynes, T.W., S.M. Hedetniemi, S.T. Hedetniemi, and M.A. Henning. (2002).“Domination in Graphs Applied to Electric Power Networks.” SIAM Journal on Discrete Mathematics, 15(4), 519–529.CrossRefGoogle Scholar
  14. Haynes, T.W., S.T. Hedetniemi, and P.J. Slater. (1998a). Domination in Graphs: Advanced Topics, vol. 209 of Pure and Applied Mathematics. Marcel Dekker.Google Scholar
  15. Haynes, T.W., S.T. Hedetniemi, and P.J. Slater. (1998b). Fundamentals of Domination in Graphs, vol. 208 of Pure and Applied Mathematics. Marcel Dekker.Google Scholar
  16. Jin, C., Q. Chen, and S. Jamin. (2001).“Inet: Internet Topology Generator.” Technical Report CSE-TR443-00, Department of EECS, University of Michigan.Google Scholar
  17. Kratsch, D. (1998).“Algorithms.” In T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, (eds.), Domination in Graphs: Advanced Topics. Marcel Dekker.Google Scholar
  18. Medina, A., A. Lakhina, I. Matta, and J.W. Byers. (2001).“Brite: An Approach to Universal Topology Generation.” In Proc. MASCOTS.Google Scholar
  19. Mehlhorn, K. and S. Näher. (1999). LEDA: A Platform of Combinatorial and Geometric Computing. Cambridge University Press.Google Scholar
  20. Roberts, F.S. (1979). Graph Theory and Its Applications to Problems of Society. SIAM Press, Odyssey Press.Google Scholar
  21. Sanchis, L.A. (2002).“Experimental Analysis of Heuristic Algorithms for the Dominating Set problem.” Algorithmica, 33(1), 3–18.CrossRefGoogle Scholar
  22. Valente, T.W., B.R. Hoffman, A. Ritt-Olson, K. Lichtman, and C.A. Johnson. (2003).“Strategies on Peer-Led Tobacco Prevention Programs in Schools.” American Journal of Public Health, 93(11), 1837–1843.CrossRefGoogle Scholar
  23. Wan, P.-J., K.M. Alzoubi, and O. Frieder. (2003).“A Simple Heuristic for Minimum Connected Dominating Set in Graphs.” International Journal of Foundations of Computer Science, 14(2), 323–333.CrossRefGoogle Scholar
  24. Weihe, K. (1998).“Covering Trains by Stations or the Power of Data Reduction.” In Proc. 1st ALEX'98, pp. 1–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Power System Applications   Consulting, DIgSILENT GmbHGomaringenGermany
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany
  3. 3.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations