Advertisement

Annals of Operations Research

, Volume 145, Issue 1, pp 281–299 | Cite as

Efficiency and total quality management in health care organizations: A dynamic frontier approach

  • Diego Prior
Article

Abstract

This paper analyses hospital performance using Data Envelopment Analysis (DEA) and the Malmquist productivity index. We follow two approaches to quantify movements in productivity: (1) the traditional approach that only considers output and input variables; and (2) a more comprehensive approach that incorporates movements in quality and restricts some achievements, if quality is reduced. On the premise that the indicator for quality (nosocomial infections) is equivalent to a bad output, we explore the characteristics of, and compare the results of, the different technological ways to incorporate quality (good or bad attributes, strong or weak disposability technological assumptions). After discussing the virtues and limitations of the existing possibilities, the paper presents a better formulation that allows the preservation of TQM postulates. The decomposition in the Malmquist productivity index shows an improvement in productivity and a positive technical change, especially when quality is introduced.

Keywords

Data Envelopment Analysis Malmquist productivity index Hospitals Quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althin, R. (2001). “Measurement of Productivity Changes: Two Malmquist Index Approaches.” Journal of Productivity Analysis, 16, 107–128.CrossRefGoogle Scholar
  2. Berg, S.A., F.R. Førsund, and E.S. Jansen. (1992). “Malmquist Indices of Productivity Growth during the Deregulation of Norwegian Banking, 1980–1989.” Scandinavian Journal of Economics (Supplement), 211–228.Google Scholar
  3. Burguess, J.F., Jr. and P.W. Wilson. (1995). “Decomposing Hospital Productivity Changes, 1985–1988: A Nonparametric Malmquist Approach.” The Journal of Productivity Analysis, 6, 343–363.CrossRefGoogle Scholar
  4. Calzado, Y., T. García, J. Laffarga, and M. Larran. (1998). “Relación Entre Eficiencia y Efectividad en Los Hospitales del Servicio Andaluz de Salud. Efficiency and Effectiveness in Andalusian Public Hospitals.” Revista de Contabilidad, 1(2), 49–83 (English summary).Google Scholar
  5. Caves, D.W. et al. (1982). “The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity.” Econometrica, 50(6), 1393–1414.CrossRefGoogle Scholar
  6. Charnes, R.D. et al. (1978). “Measuring the Efficiency of Decision-Making Units.” European Journal of Operational Research, 2, 429–444.CrossRefGoogle Scholar
  7. Chilingerian, J.A. and H.D. Sherman. (1990). “Managing Physician Efficiency and Effectiveness in Providing Hospital Services.” Health Services Management Research, 3(1), 3–15.Google Scholar
  8. Crosby, P.B. (1979). Quality is free. McGraw Hill.Google Scholar
  9. Chung, Y.H., R. Färe, and S. Grosskopf. (1997). “Productivity and Undesirable Outputs: A Directional Distance Function Approach.” Journal of Environmental Management, 51, 229–240.CrossRefGoogle Scholar
  10. Deming, W.E. (1982). Quality, Productivity and Competitive Position. MIT Center for Advanced Engineering Study.Google Scholar
  11. Donabedian, A. (1980). The Definition of Quality and Approaches to its Assessment. The Regents of the University of Michigan, Ann Arbor, MIGoogle Scholar
  12. EPINE. (1995). Prevalencia de las Infecciones Nosocomiales en los Hospitales Españoles. Epine 1990–1994. (Nosomial infections in Spanish hospitales, 1990–1994). Barcelona: Sociedad Española de Higiene y Medicina Preventiva Hospitalaria.Google Scholar
  13. Fare, R., S. Grosskopf, and F. Hernandez-Sancho. (2000). “Environmental Performance: An Index Number Approach.” Working Paper, Department of Economics, Oregon State University.Google Scholar
  14. Färe, R., S. Grosskopf, B. Lindgreen, and P. Roos. (1994). “Productivity Developments in Swedish Hospitals: A Malmquist output index approach.” In A. Charnes, W. Cooper, A.Y. Lewin, and L.M. Seiford (eds.), Data Envelopment Analysis. Theory, Methodology and Applications, Kluwer Academic Publishers.Google Scholar
  15. Färe, R., S. Grosskopf, and C.A.K. Lovell. (1994). Production Frontiers. Cambridge University Press.Google Scholar
  16. Färe, R., S. Grosskopf, C.A.K. Lovell, and C. Pasurka. (1989). “Multilateral Productivity Comparisons When Some Outputs are Undesirable: A Nonparametric Approach.” The Review of Economics and Statistics, 61(1), 90–98.CrossRefGoogle Scholar
  17. Färe, R., S. Grosskopf, and P. Roos. (1995). “Productivity and Quality Changes in Swedish Pharmacies.” International Journal of Production Economics, 39(1/2), 137–147.CrossRefGoogle Scholar
  18. Farrel, M.J. (1957). “The Measurement of Productive Efficiency.” Journal of The Royal Statistical Society Series A, 120, 253–351.Google Scholar
  19. Fixler, D. and K. Zieschang. (1992). “Incorporating Ancillary Measures of Process and Quality Changes into a Superlative Productivity Index.” Journal of Productivity Analysis, 245–267.Google Scholar
  20. Førsund, F. and L. Hjalmarsson. (1979). “Generalised Farrell Measures of Efficiency: An Application to Milk Processing in Swedish dairy plants.” The Economic Journal, 89, 294–315.Google Scholar
  21. Førsund, F.R. (1998). “The Rise and Fall of Slacks: Comments on Quasi-Malmquist Productivity Indices.” Journal of Productivity Analysis, 10, 21–34.CrossRefGoogle Scholar
  22. Gowrinsankaran, G. and R.J. Town. (1999). “Estimating the Quality of Care in Hospitals using Instrumental Variables.” Journal of Health Economics, 18, 747–767.CrossRefGoogle Scholar
  23. Grabowbski, D.C. (2001). “Medicaid Reimbursement and the Quality of Nursing Home Care.” Journal of Health Economics, 20, 549–569.CrossRefGoogle Scholar
  24. Grifell-Tatje, E., C.A.K. Lovell, and J.T. Pastor. (1998). “A Quasi-Malmquist Productivity Index.” Journal of Productivity Analysis, 10, 7–20.CrossRefGoogle Scholar
  25. Lovell, C.A.K. and J.L. Zofío. (1997). “Graphyperbolic Efficiency and Productivity Measures.” Paper presented at the Fifth European Workshop on Efficiency and Productivity Analysis, Copenhagen, Denmark.Google Scholar
  26. Malmquist, S. (1953). “Index Numbers and Indifference Surfaces.” Trabajos de Estadística, 4, 209–242.Google Scholar
  27. Murray, R. (1992). “Measuring Public-Sector Output: The Swedish Report in Output Measurement.” In: Z. Griliches (ed.), The Service Sectors, National Bureau of Economic Research, The University of Chicago Press, pp. 517–542.Google Scholar
  28. Newhouse, J.P. (1994). “Frontier Estimation: How Useful a Tool for Health Economics?” Journal of Health Economics, 13, 317–322.CrossRefGoogle Scholar
  29. O'Neill, L. (1998). “Multifactor Efficiency in Data Envelopment Analysis with an Application to Urban Hospitals.” Health Care Management Science, 1(1), 19–27.CrossRefGoogle Scholar
  30. Ozcan, Y.A. (1995). “Efficiency of Hospital Service Production in Local Markets: The Balance Sheet of U.S. Medical Armament.” Socio Economic Planning Sciences, 29(2), 139–150.CrossRefGoogle Scholar
  31. Ozcan, Y.A. and R.D. Luke. (1993). “A National Study of the Efficiency of Hospitals in Urban Markets.” Health Services Research, 28(6), 719–739.Google Scholar
  32. Parasuraman, A., V. Zeithaml, and L. Berry. (1985). “A Conceptual Model of Service Quality and its Implications for Future Research.” Journal of Marketing, 49, 41–50.CrossRefGoogle Scholar
  33. Prior, D. and M. Sola. (2001). “Measuring Productivity and Quality Changes using Data Envelopment Analysis. An application to Catalan hospitals.” Financial Accountability and Management, 17(3), 219–245.CrossRefGoogle Scholar
  34. Ray, S. and E. Desli. (1997). “Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment.” American Economic Review, 87(5), 1033–1039.Google Scholar
  35. Reinhard, S., C.A.K. Lovell, and G. Thijssen. (1999). “Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms.” American Journal of Agricultural Economics, 81(1), 44–60.CrossRefGoogle Scholar
  36. Rouse, J. (1997). “Resource and Performance Management in Public Service Organizations.” In K. Isaac-Henry, C. Painter, and C. Barnes (eds.), Management in the Public Sector. Challenge and change, 2nd edn., International Thomson Business Press.Google Scholar
  37. Seiford, L.M. and J. Zhu. (2002). “Modeling Undesirable Factors in Efficiency Evaluation.” European Journal of Operational Research, 142, 16–20.CrossRefGoogle Scholar
  38. Simar, L. and P. Wilson. (1998). “Productivity Growth in Industrialized Countries.” Working Paper, Institut de Statistique and CORE, Université Catholique de Louvain, Louvain-la-Neuve.Google Scholar
  39. Sloan, F.A., G.A. Picone, D.H. Taylor Jr. and S.Y. Chou. (2001). “Hospital Ownership and Cost and Quality of Care: Is there a Dime's worth of Difference?” Journal of Health Economics, 20, 1–21.CrossRefGoogle Scholar
  40. Tulkens, H. and P. Vanden Eeckaut. (1995). “Non-parametric Efficiency, Progress and Measures for Panel Data: Methodological Aspects.” European Journal of Operational Research, 80(3), 474–499.CrossRefGoogle Scholar
  41. Tyteca, D. (1997). “Linear Programming Models for the Measurement of Environmental Performance of Firms: Concepts and Empirical Results.” Journal of Productivity Analysis, 8, 175–189.CrossRefGoogle Scholar
  42. Worning, A.M. (1994). “Stratégies de Réduction des Infections Nosocomiales. Un modèle Pour le Développement de la qualité.” (Reduction strategies for nosocomial infections. A quality development model). In: la Santé: Qualité et choix. Paris.Google Scholar
  43. Zofío, J.L., and C.A.K. Lovell. (1998). “Yet Another Malmquist Productivity Index Decomposition.” Mimeo, Departamento de Economía, Universidad Autónoma de Madrid.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Business EconomicsUniversitat Autonoma de BarcelonaBarcelonaSpain

Personalised recommendations