Annals of Operations Research

, Volume 137, Issue 1, pp 331–348 | Cite as

Entropic Penalties in Finite Games

Article
  • 51 Downloads

Abstract

The main objects here are finite-strategy games in which entropic terms are subtracted from the payoffs. After such subtraction each Nash equilibrium solves an explicit, unconstrained, nonlinear system of smooth equations. That system, while characteristic of perturbed best responses, is amenable in computation. It also facilitates analysis of fictitious play, learning by reinforcement, and evolutionary dynamics.

Keywords

finite games Nash equilibrium fictitious play stimulus-response gradient methods evolutionary dynamics entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S.P., A de Palma, and J.-F. Thisse. (1992).Discrete Choice Theory of Product Differentiation. MIT Press.Google Scholar
  2. Benaim, M. (1996). “A Dynamical System Approach to Stochastic Approximations.” SIAM J. Control and Optimization 34, 437–472.CrossRefGoogle Scholar
  3. BorgersSarin Börgers, T. and R. Sarin. (1997). “Learning ThroughReinforcement and Replicator Dynamics.” J. Economic Theory 77, 1–14.CrossRefGoogle Scholar
  4. Borwein, J.M., A.S. Lewis, and R. Nussbaum. (1994). “EntropyMinimization, DAD Problems and Doubly-Stochastic Kernels.” J. Functional Analysis 123, 264–307.CrossRefGoogle Scholar
  5. Bremaud, P. (1999). Markov Chains, Gibbs Fields,Monte Carlo Simulation, and Queues. Berlin: Springer.Google Scholar
  6. Brown. G.W. (1951). “Iterative Solutions of Fictitious Play.” In T.C. Koopmans (ed.), Activity Analysis of Production andAllocation. Wiley: New York.Google Scholar
  7. Cavazzuti, E. (1986). “Convergence of Equilibria in theTheory of Games.” Lecture Notes in Mathematics 1190, Berlin: Springer-Verlag, pp. 95–103.Google Scholar
  8. Cavazzuti, E. and N. Pacchiarotti. (1986).“Convergence of Nash Equilibria.” Boll. Un. Mat. Ital. B5, 247–266.Google Scholar
  9. Cover, T.M. and J.A. Thomas. (1991). Elementsof Information Theory. New York: Wiley.Google Scholar
  10. Cramer, J.S. (2003). Logit Models From Economics and Other Fields. Cambridge University Press.Google Scholar
  11. Domencich, T.A. and D. McFadden. (1975). UrbanTravel Demand: A Behavioral Analysis. Amsterdam: North Holland.Google Scholar
  12. Ellison, G. and D. Fudenberg. (2000). “LearningPurified Mixed Equilibria.” J. Economic Theory 90, 84–115.CrossRefGoogle Scholar
  13. Ermoliev, Y.M. and S.D. Flåm. (2002). ”Repeated Play of Potential Games.“ Cybernetics andSystems Analysis 38, 355–367.CrossRefGoogle Scholar
  14. Flåm, S.D. (1998). “2×2 Games, Fictitious Play andGreen's Theorem.” In C. Garcia, C. Olive, and M. Sanroma (eds.),Proceedings of the IV Catalan Days of Applied Mathematics, pp. 89–101.Google Scholar
  15. Flåm, S.D. (2002). “Equilibrium, Evolutionary Stabilityand Gradient Dynamics.” International Game Theory Review 4(4), 357–370.CrossRefGoogle Scholar
  16. Fudenberg, D. and D. Kreps. (1993). “Learning MixedEquilibria.” Games and Economic Behavior 5, 320–367.CrossRefGoogle Scholar
  17. Fudenberg, D. and D.K. Levine. (1998). TheTheory of Learning in Games. MIT Press, Cambridge.Google Scholar
  18. Harris, C. (1998). “On The Rate of Convergence ofContinuous-Time Fictitious Play.” Games and Economic Behavior 22,238–259.CrossRefGoogle Scholar
  19. Hobson, A. (1969). “A New Theorem of Information Theory.” J. Statistical Physics 1, 383–391.CrossRefGoogle Scholar
  20. Hofbauer, J. and K. Sigmund, (1998) Evolutionary Games and Population Dynamics, Cambridge UniversityPress.Google Scholar
  21. Hofbauer J. (1995). Stability of the best response dynamics, Typescript.Google Scholar
  22. Hofbauer, J. and W.H. Sandholm. (2002). “On TheGlobal Convergence of Stochastic Fictitious Play.” Econometrica 70(6), 2265–2294.CrossRefGoogle Scholar
  23. Hopkins, E. (1999a). “A Note on Best Response Dynamics.” Games and Economic Behavior 29, 138–150CrossRefGoogle Scholar
  24. Hopkins, E. (1999b). “Learning, Matching, and Aggregation.” Games and Economic Behavior 26, 79–110.CrossRefGoogle Scholar
  25. Hopkins, E. (2002). “Two Competing Models of How PeopleLearn in Games.” Econometrica 70(6), 2141–2166.CrossRefGoogle Scholar
  26. Judd, K.L., Numerical Methods in Economics. The MIT Press, Mass. (1998).Google Scholar
  27. Mattsson, L-G. and J. Weibull. (2002). “Probabilistic Choice and Procedurally BoundedRationality.” Games and Economic Behavior 41, 61–78.CrossRefGoogle Scholar
  28. Maynard Smith, J. (1982). Evolution and theTheory of Games. Cambridge University Press, Cambridge.Google Scholar
  29. McFadden, D. (1976). “Quantal Choice Analysis: A Survey.” Ann. Econ. Social Measurement 5, 363–390. McKelvey and Palfrey (1995)Google Scholar
  30. McKelvey, R.D. and T.R. Palfrey. (1995). “Quantal ResponseEquilibria for Normal Form Games.” Games and Economic Behavior 10, 6–8.CrossRefGoogle Scholar
  31. McKelvey, R.D. and A. McLennan. (1996). “Computation ofEquilibria in Finite Games.” In H.M. Amman, D.A. Kendrick and J. Rust (eds.), Handbook of Computational Economics I, 87–142.Google Scholar
  32. Milgrom, P. and J. Roberts. (1991). “Adapative andSophisticated Learning in Normal Form Games.” Games and EconomicBehavior 3, 82–100.CrossRefGoogle Scholar
  33. Monderer, D. and A. Sela. (1996). “A 2×2 GameWithout the Fictitious Play Property.” Games and Economic Behavior 14,144–148.CrossRefGoogle Scholar
  34. Monderer, D. and L.S. Shapley. (1996). “Fictitious PlayProperty for Games With Identical Interest.” Journal of EconomicTheory 68, 258–265.Google Scholar
  35. Myerson, R. (1977). “Refinements of the Nash EquilibriumConcept.” Int. J. Game Theory 7, 73–80.CrossRefGoogle Scholar
  36. Nemytskii, V.V. and V.V. Stepanov. (1960).Qualitative Theory of Differential Equations. Princeton: Princeton UniversityPress.Google Scholar
  37. Owen, G. (1968). Game Theory. Saunders Company,Philadelphia.Google Scholar
  38. Peyton Young, H. (1998). Individual Strategy andSocial Structure. Princeton University Press.Google Scholar
  39. Pshenichnii, B. (1971). Necessary Conditions foran Extremum. Marcel Dekker, New York.Google Scholar
  40. Robinson, J. (1951). “An Iterative Method for Solving aGame.” Ann. Math. 54, 296–301.CrossRefGoogle Scholar
  41. Rockafellar, R.T. (1970). Convex Analysis,Princeton University Press.Google Scholar
  42. Rosenthal, R. (1989). “A Bounded-Rationality Approach to tothe Study of Noncooperative Games.” J. Game Theory 18, 273–292.CrossRefGoogle Scholar
  43. Samuelson, L. (1997). Evolutionary Games andEquilibrium Selection. MIT Press.Google Scholar
  44. Shannon, C.E. (1948). “A Mathematical Theory ofCommunication.” Bell System Tech. Journal 27, 379–243, 623–656.Google Scholar
  45. Sutton, R.S. and A.G. Barto. (1998). Reinforcement Learning. MIT Press.Google Scholar
  46. van Damme, E. and J. Weibull. (2002). “Evolution in Games With Endogenous MistakeProbabilities.” J. Economic Theory 106, 296-315.CrossRefGoogle Scholar
  47. Vega-Redondo, F. (1996). Evolution, Games and Economic Behavior. Oxford University Press.Google Scholar
  48. Weibull, J. W. (1996) Evolutionary Game Theory. The MIT Press, Cambridge: Massachusetts.Google Scholar
  49. Zinmeister, M. (2000). Thermodynamic Formalismand Holomorphic Dynamical Systems. SMF/AMS Texts and Monographs 2, Amer.Math. Soc.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of BergenNorway
  2. 2.Department of MathematicsUniversity of ModenaItaly

Personalised recommendations