Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

On Some Properties of Relative Capacity and Thinness in Weighted Variable Exponent Sobolev Spaces

  • 1 Accesses


We define the weighted relative p(.)-capacity and discuss its properties in the space \(W_\vartheta ^{1,p(.)}({\mathbb{R}^n})\). Also, we investigate some properties of the weighted variable Sobolev capacity. It is shown that there is a relation between these two capacities. Moreover, we introduce the notion of thinness related to this newly defined relative capacity and prove an equivalence statement for this thinness.

This is a preview of subscription content, log in to check access.


  1. [1]

    I. Aydın, On variable exponent amalgam spaces, An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat., 20 (2012), 5–20.

  2. [2]

    I. Aydın, Weighted variable Sobolev spaces and capacity, J. Funct. Spaces Appl., 2012, Article ID 132690, 17 pp.

  3. [3]

    G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1954), 131–295.

  4. [4]

    L. Diening, Maximal function on generalized Lebesgue spaces Lp(.), Math. Inequal. Appl., 7 (2004), 245–253.

  5. [5]

    L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in: Proceedings of the Function Spaces, Differential Operators and Nonlinear Analysis (FSDONA’ 04), Milovy, Czech (2004), pp. 38–58.

  6. [6]

    L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag (Berlin, 2011).

  7. [7]

    V. N. Dubinin and M. Vuorinen, Ahlfors–Beurling conformal invariant and relative capacity of compact sets, Proc. Amer. Math. Soc., 142 (2014), 3865–3879.

  8. [8]

    L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press (Boca Raton, Fla, USA, 1992).

  9. [9]

    X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wk,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424–446.

  10. [10]

    H. Federer, Geometric Measure Theory, Springer-Verlag (Berlin, 1969).

  11. [11]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag (Berlin, 1983).

  12. [12]

    P. Harjulehto, P. Hästö and M. Koskenoja, Properties of capacities in variable exponent Sobolev spaces, J. Anal. Appl., 5 (2007), 71–92.

  13. [13]

    P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, Sobolev capacity on the space W1,p(.)(ℝn), J. Funct. Spaces Appl., 1 (2003), 17–33.

  14. [14]

    J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press (Oxford, 1993).

  15. [15]

    T. Kilpeläinen, Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Math., 19 (1994), 95–113.

  16. [16]

    V. Kokilashvili and S. Samko, Singular integrals in weighted Lebesgue spaces with variable exponent, Georgian Math. J., 10 (2003), 145–156.

  17. [17]

    O. Kováčik and J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41(116) (1991), 592–618.

  18. [18]

    Q. Liu, Compact trace in weighted variable exponent Sobolev spaces W1,p(x) (Ω ν0, ν1), J. Math. Anal. Appl., 348 (2008), 760–774.

  19. [19]

    V. G. Maz’ja, Sobolev Spaces, Springer (Berlin, 1985).

  20. [20]

    J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag (1983).

  21. [21]

    S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct., 16 (2005), 461–482.

  22. [22]

    V. V. Zhikov and M. D. Surnachev, On density of smooth functions in weighted Sobolev spaces with variable exponents, St. Petersburg Math. J., 27 (2016), 415–436.

Download references

Author information

Correspondence to C. Unal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Unal, C., Aydin, I. On Some Properties of Relative Capacity and Thinness in Weighted Variable Exponent Sobolev Spaces. Anal Math 46, 147–167 (2020). https://doi.org/10.1007/s10476-020-0014-1

Download citation

Key words and phrases

  • weighted variable exponent Sobolev space
  • relative capacity
  • Sobolev capacity
  • thinness

Mathematics Subject Classification

  • primary 32U20
  • 31B15
  • secondary 46E35
  • 43A15