Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Classical Orthogonal Polynomials and Some New Properties for Their Centroids of Zeroes

  • 10 Accesses

Abstract

This paper aims to highlight new properties of the centroid of the zeroes of a polynomial. As an illustration, we apply these techniques to O-classical orthogonal polynomials, where O is the derivative operator D or the q-derivative Hq.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    B. Aloui, F. Marcellán and R. Sfaxi, Classical orthogonal polynomials with respect to a lowering operator generalizing the Laguerre operator, Integral Transforms Spec. Funct., 24 (2013), 636–648.

  2. [2]

    B. Aloui and W. Chammam, Classical orthogonal polynomials via a second-order linear differential operators, Indian J. Pure Appl. Math. (2020) (to appear).

  3. [3]

    S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math Z., 29 (1929), 730–736.

  4. [4]

    E. Buendia, J. S. Dehesa and F. J. Galvez, The distribution of zeros of the polynomial eigenfunctions of ordinary differential operators of arbitrary order, in: Orthogonal Polynomials and their Applications, Alfaro, M. et al. (eds.), Lecture Notes in Mathematics, vol. 1329, Springer (1986), pp. 222–235.

  5. [5]

    K. M. Case, Sum rules for zeros of polynomials. I, II, J. Math. Phys., 21 (1980), 702–708, 709–714.

  6. [6]

    T. S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, vol. 13, Gordon and Breach Science Publishers (New York-London-Paris, 1978).

  7. [7]

    L. Derwidué, Introduction à l’algèbre supérieure et au calcul numérique algébrique, Sciences et Lettres (Liège, 1957).

  8. [8]

    C.C. Grosjean, The weight function, generating functions and miscellaneous properties of the sequences of orthogonal polynomials of the second kind associated with the Jacobi and the Gegenbauer polynomials, J. Comput. Appl. Math., 16 (1986), 259–307.

  9. [9]

    D. Janovská and G. Opfer, A note on the computation of all zeros of simple, quater- nionic polynomials, SIAM J. Numerical Analysis, 48 (2010), 244–256.

  10. [10]

    L. Khériji and P. Maroni, The Hq-classical orthogonal polynomials, Acta. Appl. Math., 71 (2002), 49–115.

  11. [11]

    F. Marcellán, A. Martínez-Finkelshtein and P. Martínez-González, Electrostatic models for zeros of polynomials: old, new and some open problems, J. Comput. Appl. Math., 207 (2007), 258–272.

  12. [12]

    F. Marcellán and J. C. Petronilho, On the solutions of some distributional differential equations: existence and characterizations of the classical moment functionals, Integral Transforms Spec. Funct., 2 (1994), 185–218.

  13. [13]

    P. Maroni, Fonctions Eulériennes, polynômes orthogonaux classiques, Techniques de l’Ingénieur, A, 154 (1994), 1–30.

  14. [14]

    P. Maroni, Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semi-classiques, in: Orthogonal Polynomials and their Applications, C. Brezinski et al. (eds.), IMACS Ann. Comput. Appl. Math., 9 (Basel, 1991), pp. 95–130.

  15. [15]

    A. F. Nikiforov and V. B. Üvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications, translated from Russian by Ralph P. Boas, Springer (Basel, 1988).

  16. [16]

    A. Ronveaux, Orthogonal polynomials-centroid of their zeroes, Numer Algorithms, 49 (2008), 373–385.

  17. [17]

    P. Rutka and R. Smarzewski, Complete solution of the electrostatic equilibrium problem for classical weights, Appl. Math. Comput., 218 (2012), 6027–6037.

  18. [18]

    P. Rutka and R. Smarzewski, Difference inequalities and barycentric identities for classical discrete iterated weights, Math. Comp., 88 (2019), 1791–1804.

  19. [19]

    P. Rutka and R. Smarzewski, Explicit barycentric formulae for osculatory interpolation at roots of classical orthogonal polynomials, Math. Comp., 86 (2017), 2409–2427.

  20. [20]

    R. Smarzewski and P. Rutka, Inequalities of Chernoff type for finite and infinite sequences of classical orthogonal polynomials, Proc. Amer. Math. Soc., 138 (2010), 1305–1315.

  21. [21]

    H. Wang, D. Huybrechs, and S. Vandewalle, Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials, Math. Comp., 83 (2014), 2893–2914.

Download references

Acknowledgement

The authors would like to thank the referees for many valuable suggestions that improved the paper.

Author information

Correspondence to W. Chammam.

Additional information

Dedicated to the memory of our Professor Ahmed Fitouhi, who recently passed away

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aloui, B., Chammam, W. Classical Orthogonal Polynomials and Some New Properties for Their Centroids of Zeroes. Anal Math 46, 13–23 (2020). https://doi.org/10.1007/s10476-020-0012-3

Download citation

Key words and phrases

  • classical orthogonal polynomial
  • centroid of zeroes

Mathematics Subject Classification

  • primary 33C45
  • secondary 42C05