Advertisement

Acta Mathematica Hungarica

, Volume 159, Issue 2, pp 638–652 | Cite as

On the cup-length of certain classes of flag manifolds

  • L’. BalkoEmail author
  • J. Lörinc
Article
  • 15 Downloads

Abstract

We compute the cup-length of flag manifolds F(2, 2, n3) and F(1, 3, 2s+1 − 3) and the height of the third Stiefel–Whitney characteristic class of the canonical vector bundle over the Grassmann manifold F(4, n).

Key words and phrases

cup-length flag manifold Stiefel–Whitney characteristic class 

Mathematics Subject Classification

primary 57N65 secondary 55M30 57R20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors are thankful to the anonymous referee for carefully reading the manuscript and for his useful comments that improved the original text.

References

  1. 1.
    Berstein, I.: On the Lusternik-Schnirelmann category of Grassmannians. Math. Proc. Cambridge Philos. Soc. 79, 129–134 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borel, A.: La cohomologie mod 2 de certains espaces homogènes. Comment. Math. Helv. 27, 165–197 (1953)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, Math. Surveys Monogr. 103, Amer. Math. Soc. (Providence, RI, 2003)Google Scholar
  4. 4.
    Dutta, S., Khare, S.S.: On second Stiefel-Whitney class of Grassmann manifolds and cuplength. J. Indian Math. Soc. 69, 237–251 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hiller, H.L.: On the cohomology of real Grassmanians. Trans. Amer. Math. Soc. 257, 521–533 (1980)MathSciNetCrossRefGoogle Scholar
  6. 6.
    L'. Horanská and J. Korbaš, On cup products in some manifolds, Bull. Belg. Math. Soc. Simon Stevin, 7 (2000), 21–28MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ilori, S.A., Ajayi, D.O.: The height of the first Stiefel-Whitney class of the real flag manifolds. Indian J. Pure Appl. Math. 31, 621–624 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Korbaš, J., Lörinc, J.: The \({\mathbb{Z}}_2\)-cohomology cup-lengt of real flag manifolds. Fund. Math. 178, 143–158 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lörinc, J.: The height of the first Stiefel-Whitney class of any nonorientable real flag manifold. Math. Slovaca 53, 91–95 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    J. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press (Princeton, NJ, 1974)Google Scholar
  11. 11.
    Petrović, Z.Z., Prvulović, B.I., Radovanović, M.: On maximality of the cup-length of flag manifolds. Acta Math. Hungar. 149, 448–461 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Radovanović, M.: On the \(\mathbb{Z}_2\)-cohomology cup-length of some real flag manifolds. Filomat 30, 1577–1590 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Stong, R.E.: Cup products in Grassmannians. Topology Appl. 13, 103–113 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Algebra and Geometry, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislava 4Slovakia
  2. 2.Všeobecná úverová bankaBratislava 25Slovakia

Personalised recommendations