Advertisement

Maximal and generalized fractional integral operators in grand Morrey martingale spaces

  • Y. Deng
  • L. LiEmail author
Article
  • 12 Downloads

Abstract

In the spirit of grand Morrey spaces and martingale Morrey spaces, we introduce grand Morrey martingale spaces. Doob’s maximal inequalities on these spaces are presented. Furthermore, we establish the boundedness of generalized fractional integrals as martingale transforms in this framework. At the end, applications to some special cases are provided as well.

Key words and phrases

martingale grand Morrey space Doob’s maximal inequality generalized fractional integral 

Mathematics Subject Classification

60G42 60G46 46E30 42B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbulut, A., Guliyev, V., Noi, T., Sawano, Y.: Generalized Hardy-Morrey spaces. Z. Anal. Anwend.36, 129–149 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arai, R., Nakai, E.: Commutators of Calderón-Zygmund and generalized fractional integral operators on generalized Morrey spaces. Rev. Mat. Complut.31, 287–331 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Burenkov, V., Guliyev, H.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces. Studia Math.163, 157–176 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Burkholder, D.: Martingale transforms. Ann. Statist.37, 1494–1504 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chao, J., Ombe, H.: Commutators on dyadic martingales. Proc. Japan Acad.61, 35–38 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hao, Z.: Atomic decomposition of predictable martingale Hardy space with variable exponents. Czech. Math. J.65, 1033–1045 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal.18, 1128–1145 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hao, Z., Li, L.: Grand martingale Hardy spaces. Acta Math. Hungar.153, 417–429 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ho, K.-P.: Atomic decompositions of martingale Hardy-Morrey spaces. Acta Math. Hungar.149, 177–189 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ho, K.-P.: Doob's inequality, Burkholder-Gundy inequality and martingale transforms on martingale Morrey spaces. Acta Math. Sci.38, 93–109 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypothesis. Arch. Ration. Mech. Anal.119, 129–143 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jiao, Y., Wu, L., Yang, A., Yi, R.: The predual and John-Nirenberg inequalities on generalized BMO martingale spaces. Trans. Amer. Math. Soc.369, 537–553 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kokilashvili, V., Meskhi, A., Rafeiro, H.: Boundedness of commutators of singular and potential operators in generalized grand Morrey spaces and some applications. Studia Math.217, 159–178 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kokilashvili, V., Meskhi, A., Rafeiro, H.: Riesz type potential operators in generalized grand Morrey spaces. Georgian Math. J.20, 43–64 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    R. Long,Martingale Spaces and Inequalities, Science Press (Beijing, 1993)Google Scholar
  16. 16.
    Meskhi, A.: Maximal functions, potentials and singular integrals in grand Morrey spaces. Complex Var. Elliptic Equ.56, 1003–1019 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Morrey, C.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc.43, 126–166 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nakai, E.: Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Studia Math.188, 193–221 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E. Nakai and G. Sadasue, Martingale Morrey–Campanato spaces and fractional integrals,J. Funct. Spaces Appl., (2012), Article ID 673929, 29 ppGoogle Scholar
  20. 20.
    E. Nakai, G. Sadasue and Y. Sawano, Martingale Morrey–Hardy and Canpanato–Hardy spaces,J. Funct. Spaces Appl., (2013), Article ID 690258, 14 ppGoogle Scholar
  21. 21.
    Nakai, E., Sadasue, G.: Characterizations of boundedness for generalized fractional integrals on martingale Morrey spaces. Math. Inequal. Appl.20, 929–947 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    J. Neveu,Discrete-parameter Martingales, North-Holland (Amsterdam, 1975)Google Scholar
  23. 23.
    Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J.64, 209–228 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Peetre, J.: On the theory of\( \cal{L}_{p,\lambda }\) spaces. J. Funct. Anal.4, 71–87 (1964)CrossRefGoogle Scholar
  25. 25.
    Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Trans. Amer. Math. Soc.363, 6481–6503 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    F. Weisz,Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math., Vol. 1568, Springer-Verlag (Berlin, 1994)Google Scholar
  27. 27.
    W. Yuan, W. Sickel and D. Yang,Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Math., Vol. 2005, Springer-Verlag (Berlin, 2010)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.College of Mathematics and EconometricsHunan UniversityChangshaChina

Personalised recommendations