Advertisement

Existence results for some Dirichlet problems involving Finsler–Laplacian operator

  • I.-I. Mezei
  • O. Vas
Article
  • 2 Downloads

Abstract

Using the direct method of the calculus of variations, the Leray–Schauder alternative and the Krasnosel’skii-type fixed point theorem proved by R. Precup in [11], we prove existence and localization results for two Dirichlet problems involving Finsler–Laplacian operator.

Key words and phrases

variational method fixed point theory Leray–Schauder alternative Harnack inequality Krasnosel’skii theorem Finsler–Laplacian equation 

Mathematics Subject Classification

47H10 47J30 31C05 53C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azizieh C., Clèment P.: A priori estimates and continuation methods for positive solutions of p-Laplace equations. J. Differential Equations., 179, 213–245 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Bao, S.-S. Chern and Z. Shen, Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, 200, Springer-Verlag (New York, 2000).Google Scholar
  3. 3.
    H. B. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag (Cham, 2012).Google Scholar
  4. 4.
    D. G. Figuerido, Lectures on Ekeland Variational Principle with Applications and Detours, Tata Inst. of Fundamental Research, Springer-Verlag (1989).Google Scholar
  5. 5.
    G. Dinca and J. Mahwin, Brouwer degree and applications, www.ljll.math.upmc.fr/~smets/ULM/Brouwer_Degree_and_applications.pdf (2009).Google Scholar
  6. 6.
    Dinca G., Jebelean P., Mawhin J.: Variational and topological methods for Dirichlet problems with p-Laplacian. Port. Math. (N. S.), 58, 339–378 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    F. Della Pietra, G. di Blasio and N. Gavitone, Anisotropic Hardy inequalities, arXiv:1512.05513v1 (2015).
  8. 8.
    G. Franzina, Existence, Uniqueness, Optimization and Stability for low Eigenvalues of some Nonlinear Operators, Ph.D. Thesis, Università Degli Studi di Trento, Dipartimento di Matematica (2012).Google Scholar
  9. 9.
    A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag (New York, 2003).Google Scholar
  10. 10.
    Lieberman G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal., 12, 1203–1219 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Precup R.: Moser–Harnack inequality, Krasnosel’skii-type fixed point theorems in cones and elliptic problems. Topol. Methods Nonlinear Anal., 40, 301–313 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Precup R.: A compression type mountain pass theorem in conical shells. J. Math. Anal. Appl., 338, 1116–1130 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Precup R.: Two positive nontrivial solutions for a class of semilinear elliptic variational systems. J. Math. Anal. Appl., 373, 138–146 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Precup R.: Critical point theorems in cones and multiple positive solutions of elliptic problems. Nonlinear Anal., 5, 834–851 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser (Basel, 2007).Google Scholar
  16. 16.
    M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser (Boston, 1999)Google Scholar
  17. 17.
    Schechter M.: The Hampwile alternative. Comm. Appl. Nonlinear Anal., 1, 13–46 (1994)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Schechter M.: The Hampwile theorem for nonlinear eigenvalues. Duke Math. J., 59, 325–335 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Xia, On a class of anisotropic problems, Ph.D. Thesis, Albert-Ludwigs-Universität Freiburg, Facultät für Mathematik und Physik (2012).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceBabeş–Bolyai UniversityCluj-NapocaRomania

Personalised recommendations