Advertisement

Common stabilizations of amalgamated Heegaard splitting and dual Heegaard splitting

Article
  • 4 Downloads

Abstract

We give an upper bound for the genus of a common stabilization of an amalgamated Heegaard splitting and a dual Heegaard splitting and show the upper bound is the best possible.

Key words and phrases

Dual Heegaard splitting common stabilization amalgamation Rubinstein–Scharlemann graphic 

Mathematics Subject Classification

57M27 57M50 57N10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachman, D.: Connected sums of unstabilized Heegaard splittings are unstabilized. Geom. Topol. 12, 2327–2378 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bachman, D.: Stabilizing and destabilizing Heegaard splittings of sufficiently complicated \(3\)-manifolds. Math. Ann. 355, 697–728 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cerf, J., La stratefacation naturelle des especes de fonctions différentiables réeles et la théorème de la pseudo-isotopie. Publ. Math. I.H.E.S. 39, 5–173 (1970)CrossRefGoogle Scholar
  4. 4.
    Du, K.: A note on proof of Gordon's Conjecture. Bull. Korean Math. Soc. 55, 699–715 (2018)MathSciNetzbMATHGoogle Scholar
  5. 5.
    K. Du, On unstabilized Heegaard splittings of amalgamated 3-manifolds, J. Knot Theory Ramifications, 27 (2018), 1850005, 11 pp.Google Scholar
  6. 6.
    Du, K.: Structure of Heegaard splitting of self-amalgamated \(3\)-manifold. Topology Appl. 229, 176–186 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Du, K.: Unstabilized and uncritical dual Heegaard splitting of product \(I\)-bundle. Topology Appl. 204, 266–277 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Du, Unstabilized dual Heegaard splittings of 3-manifolds, J. Knot Theory Ramifications, 25 (2016), 1650032, 16 pp.Google Scholar
  9. 9.
    K. Du, Unstabilized weakly reducible Heegaard splittings, Osaka J. Math. (to appear)Google Scholar
  10. 10.
    Du, K., Gao, X.: A note on Heegaard splittings of amalgamated 3-manifolds. Chin. Ann. Math. Ser. B. 32, 475–482 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Du, K., Ma, J., Qiu, R., Zhang, M.: Heegaard genera of annular \(3\)-manifolds. J. Knot Theory Ramifications 20, 547–566 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Du, K., Qiu, R.: A note on the uniqueness of unstabilized Heegaard splittings of amalgamated \(3\)-manifolds. Topology Appl. 204, 135–148 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Du and R. Qiu, Different Heegaard splittings on \(3\)-manifolds (preprint)Google Scholar
  14. 14.
    K. Du and R. Qiu, Minimal Heegaard genus of amalgamated 3-manifolds, J. Knot Theory Ramifications, 26 (2017), 1750063, 7 pp.Google Scholar
  15. 15.
    Du, K., Qiu, R.: The self-amalgamation of high distance Heegaard splittings is always efficient. Topology Appl. 157, 1136–1141 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hass, J., Thompson, A., Thurston, W.: Stabilization of Heegaard splittings. Geom. Topol. 13, 2029–2050 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hartshorn, K.: Heegaard splittings of Haken manifolds have bounded distance. Pacific J. Math. 204, 61–75 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Heegaard, Forstudier til en topologisk teori for de algebraiske fladers sammenhaeng, Dissertation (Cophenhagen, 1898)Google Scholar
  19. 19.
    Hempel, J.: 3-manifolds as viewed from the curve complex. Topology 40, 631–657 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ido, A., Jang, Y., Kobayashi, T.: Heegaard splittings of distance exactly \(n\). Algebr. Geom. Topol. 14, 1395–1411 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Johnson, J.: Stable functions and common stabilizations of Heegaard splittings. Trans. Amer. Math. Soc. 361, 3747–3765 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Johnson, J.: Bounding the stable genera of Heegaard splittings from below. J. Topol. 3, 668–690 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Kirby, Problems in low dimensional manifold theory, in: Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (Providence, RI, 1978), pp. 273–312Google Scholar
  24. 24.
    Kobayashi, T., Qiu, R.: The amalgamation of high distance Heegaard splittings is always efficient. Math. Ann. 341, 707–715 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kobayashi, T., Qiu, R., Rieck, Y., Wang, S.: Separating incompressible surfaces and stabilizations of Heegaard splittings. Math. Proc. Cambridge Philos. Soc. 137, 633–643 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kobayashi, T., Saeki, O.: The Rubinstein-Scharlemann graphic of a 3-manifold as the discriminant set of a stable map. Pacific J. Math. 195, 101–156 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lei, F.: On stability of Heegaard splittings. Math. Proc. Cambridge Philos. Soc. 129, 55–57 (2000)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lei, F., Yang, G.: A lower bound of genus of amalgamations of Heegaard splittings. Math. Proc. Cambridge Philos. Soc. 146, 615–623 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, F., Lei, F., Yang, G.: Some sufficient conditions for Heegaard genera to be additive under annulus sum. Math. Scand. 115, 173–188 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Li, F., Yang, G., Lei, F.: A sufficient condition for the genus of an amalgamated \(3\)-manifold not to go down. Sci. China Math. 53, 1697–1702 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Li, F., Yang, G., Lei, F.: Heegaard genera of high distance are additive under annulus sum. Topology Appl. 157, 1188–1194 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, T.: Heegaard surfaces and the distance of amalgamation. Geom. Topol. 14, 1871–1919 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    T. Li, On the Heegaard splittings of amalgamated 3-manifolds, in: Workshop on Heegaard Splittings, Geom. Topol. Monogr., Geom. Topol. Publ., Coventry, 12 (2007), 157–190Google Scholar
  34. 34.
    R. Qiu, Stabilizations of reducible Heegaard splittings, arXiv:Math.GT/0409497
  35. 35.
    Qiu, R., Scharlemann, M.: A proof of the Gordon conjecture. Adv. Math. 222, 2085–2106 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Qiu, R., Zou, Y., Guo, Q.: The Heegaard distances cover all nonnegative integers. Pacific J. Math. 275, 231–255 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Reidemeister, K.: Zur dreidimensionalen Topologie. Abh. Math. Sem. Univ. Hamburg 9, 189–194 (1933)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Rubinstein, H., Scharlemann, M.: Comparing Heegaard splittings of non-Haken 3-manifolds. Topology 35, 1005–1026 (1996)MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Scharlemann, Heegaard splittings of compact 3-manifolds, in: Handbook of Geometric Topology, North-Holland (Amsterdam, 2006), pp. 921–953.Google Scholar
  40. 40.
    Scharlemann, M.: Proximity in the curve complex: boundary reduction and bicompressible surfaces. Pacific J. Math. 228, 325–348 (2006)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Scharlemann, M., Tomova, M.: Alternate Heegaard genus bounds distance. Geom. Topol. 10, 593–617 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Scharlemann, M., Thompson, A.: Heegaard splitting of (surface)\(\times {I}\) are standard. Math. Ann. 295, 549–564 (1993)MathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Schultens, The classification of Heegaard splittings for (compact orientable surface) \(\times S^1\), Proc. London Math. Soc., (3) (1993), 425–448Google Scholar
  44. 44.
    Schultens, J.: The stabilization problem for Heegaard splittings of Seifert fibered spaces. Topology Appl. 73, 133–139 (1996)MathSciNetCrossRefGoogle Scholar
  45. 45.
    J. Schultens and R. Weidmann, Destabilizing amalgamated Heegaard splittings, in: Workshop on Heegaard Splittings, Geom. Topol. Monogr., Geom. Topol. Publ., Coventry, 12 (2007), 319–334Google Scholar
  46. 46.
    Sedgwick, E.: An infinite collection of Heegaard splittings that are equivalent after one stabilization. Math. Ann. 308, 65–72 (1997)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Singer, J.: Three-dimensional manifolds and their Heegaard diagrams. Trans. Amer. Math. Soc. 35, 88–111 (1933)MathSciNetCrossRefGoogle Scholar
  48. 48.
    J. Souto, Distances in the curve complex and the Heegaard genus, preprint, www.math.ubc.ca/jsouto/papers/Heeg-genus.pdf
  49. 49.
    Yang, G., Lei, F.: Amalgamations of Heegaard splittings in \(3\)-manifolds without some essential surfaces. Algebr. Geom. Topol. 9, 2041–2054 (2009)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Yang, G., Lei, F.: On amalgamations of Heegaard splittings with high distance. Proc. Amer. Math. Soc. 137, 723–731 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zou, Y., Du, K., Guo, Q., Qiu, R.: Unstabilized self-amalgamation of a Heegaard splitting. Topology Appl. 160, 406–411 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouChina

Personalised recommendations