Acta Mathematica Hungarica

, Volume 155, Issue 1, pp 104–129 | Cite as

The Katchalski–Lewis transversal problem for regular polygons

  • Q. Du
  • L. Yuan
  • T. Zamfirescu


If every k-membered subfamily of a family of plane convex bodies has a line transversal, then we say that this family has property T(k). We say that a family \({\mathcal{F}}\) has property \({T-m}\), if there exists a subfamily \({\mathcal{G} \subset \mathcal{F}}\) with \({|\mathcal{F} - \mathcal{G}| \le m}\) admitting a line transversal. Heppes [7] posed the problem whether there exists a convex body K in the plane such that if \({\mathcal{F}}\) is a finite T(3)-family of disjoint translates of K, then m = 3 is the smallest value for which \({\mathcal{F}}\) has property \({T-m}\). In this paper, we study this open problem in terms of finite T(3)-families of pairwise disjoint translates of a regular 2n-gon \({(n \ge 5)}\). We find out that, for \({5 \le n \le 34}\), the family has property \({T - 3}\) ; for \({n \ge 35}\), the family has property \({T - 2}\).

Key words and phrases

2n-gon line transversal translate 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bezdek, On the transversal-conjecture of Katchalski and Lewis, in: Intuitive Geometry (Szeged, 1991), Colloq. Math. Soc. János Bolyai, vol. 63, North-Holland (Amsterdam, 1994), pp. 23–25Google Scholar
  2. 2.
    Danzer, L.: Über ein Problem aus der Kombinatorischen Geometrie. Arch. Math. 8, 347–351 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Qingdan Du and Liping Yuan, An upper bound on the transversal width of smaller overlapping \(T(3)\)-families of discs, manuscriptGoogle Scholar
  4. 4.
    Grünbaum, B.: On common transversals. Arch. Math. 9, 465–469 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Heppes, A.: New upper bound on the transversal width of \(T(3)\)-families of discs. Discrete Comput. Geom. 34, 463–474 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Heppes, A.: Proof of the Katchalski-Lewis transversal conjecture for \(T(3)\)-families of congruent discs. Discrete Comput. Geom. 38, 289–304 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Holmsen, A transversal theorem in the plane, unpublished manuscript, 2001Google Scholar
  8. 8.
    Holmsen, A.: New bounds on the Katchalski-Lewis transversal problem. Discrete Comput. Geom. 29, 395–408 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kaiser, T.: Line transversals to unit disks. Discrete Comput. Geom. 28, 379–387 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Katchalski, M.: A conjecture of Grünbaum on common transversals. Math. Scand. 59, 192–198 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Katchalski, M., Lewis, T.: Cutting families of convex sets. Proc. Amer. Math. Soc. 79, 457–461 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tverberg, H.: Proof of Grünbaum's conjecture on common transversals for translates. Discrete Comput. Geom. 4, 191–203 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhuangP.R. China
  2. 2.Hebei Key Laboratory of Computational Mathematics and ApplicationsShijiazhuangP.R. China
  3. 3.Fachbereich MathematikTechnische Universität DortmundDortmundGermany
  4. 4.Institute of Mathematics “Simion Stoilow”Roumanian AcademyBucharestRomania

Personalised recommendations