Advertisement

Acta Mathematica Hungarica

, Volume 150, Issue 2, pp 441–455 | Cite as

Computing the Thurston–Bennequin invariant in open books

  • S. Durst
  • M. KegelEmail author
  • M. Klukas
Article

Abstract

We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.

Key words and phrases

Thurston–Bennequin invariant Legendrian knot open book 

Mathematics Subject Classification

primary 57R17 secondary 57M27 57R65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Baker and J. Etnyre, Rational linking and contact geometry, in Perspectives in analysis, geometry, and topology, Progr. Math. 296, Birkhäuser Verlag (Basel, 2012), pp. 19–37.Google Scholar
  2. 2.
    Baker K., Grigsby J.: Grid diagrams and Legendrian lens space links. J. Symplectic Geom. 7, 415–448 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. Conway, Transverse surgery on knots in contact 3-manifolds, arXiv:1409.7077.
  4. 4.
    J. Etnyre, Convex surfaces in contact geometry: class notes, Lecture notes available on: http://people.math.gatech.edu/~etnyre/preprints/papers/surfaces.pdf
  5. 5.
    J. Etnyre, Lectures on open book decompositions and contact structures, arXiv:math/0409402.
  6. 6.
    D. Gay and J. Licata, Morse structures on open books, arXiv:1508.05307.
  7. 7.
    Geiges H.: An Introduction to Contact Topology. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Geiges H., Onaran S.: Legendrian rational unknots in lens spaces. J. Symplectic Geom. 13, 17–50 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Honda K., Kazez W., Matić G.: On the contact class in Heegaard Floer homology. J. Differential Geom. 83, 289–311 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Kegel, The Legendrian knot complement problem, arXiv:1604.05196.
  11. 11.
    Lisca P., Ozsváth P., Stipsicz A., Szabó Z.: Heegaard Floer invariants of Legendrian knots in contact three-manifolds. J. Eur. Math. Soc. (JEMS) 11, 1307–1363 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ozbagci B.: Contact handle decompositions. Topology Appl. 158, 718–727 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    B. Ozbagci and A. Stipsicz, Surgery on Contact 3-Manifolds and Stein Surfaces, Bolyai Society Mathematical Studies, Springer-Verlag (Berlin, 2004).Google Scholar
  14. 14.
    D. Rolfsen, Knots and Links, AMS Chelsea Publ. (Providence, RI, 2003).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Institute of Science and Technology AustriaKlosterneuburgAustria

Personalised recommendations