Acta Mathematica Hungarica

, Volume 149, Issue 2, pp 286–296 | Cite as

Generalized P-reducible Finsler metrics

  • A. Heydari
  • E. PeyghanEmail author
  • A. Tayebi


We study a class of Finsler metrics which contains the class of P-reducible metrics. Finsler metrics in this class are called generalized P-reducible metrics. We consider generalized P-reducible metrics with scalar flag curvature and find a condition under which these metrics reduce to C-reducible metrics. This generalizes Matsumoto’s theorem, which describes the equivalency of C-reducibility and P-reducibility on Finsler manifolds with scalar curvature. Then we show that generalized P-reducible metrics with vanishing stretch curvature are C-reducible.

Key words and phrases

C-reducible metric P-reducible metric flag curvature 

Mathematics Subject Classification

53C60 53C25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bejancu A., Farran H.: Generalized Landsberg manifolds of scalar curvature. Bull. Korean Math. Soc. 37, 543–550 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Berwald L.: Über Parallelübertragung in Räumen mit allgemeiner Massbestimmung. Jber. Deutsch. Math.-Verein. 34, 213–220 (1926)zbMATHGoogle Scholar
  3. 3.
    Bidabad B., Tayebi A.: Properties of generalized Berwald connections. Bull. Iran. Math. Society 35, 237–254 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Matsumoto M.: On C-reducible Finsler spaces. Tensor, N.S. 24, 29–37 (1972)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Matsumoto M.: On Finsler spaces with Randers metric and special forms of important tensors. J. Math. Kyoto Univ. 14, 477–498 (1974)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Matsumoto M., Hōjō S.: A conclusive theorem for C-reducible Finsler spaces. Tensor. N.S. 32, 225–230 (1978)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Matsumoto M., Shimada H.: On Finsler spaces with the curvature tensors \({P_{hijk}}\) and \({S_{hijk}}\) satisfying special conditions. Rep. Math. Phys. 12, 77–87 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Matsumoto M.: An improvment proof of Numata and Shibata’s theorem on Finsler spaces of scalar curvature. Publ. Math. Debrecen 64, 489–500 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Mo X.: The flag curvature tensor on a closed Finsler space. Results in Math. 36, 149–159 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Najafi B., Shen Z., Tayebi A.: Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties. Geom. Dedicata 131, 87–97 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Najafi B., Tayebi A.: Finsler Metrics of scalar flag curvature and projective invariants. Balkan Journal of Geometry and Its Applications 15, 90–99 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Prasad B.N.: Finsler spaces with the torsion tensor \({P_{ijk}}\) of a special form. Indian. J. Pur. Appl. Math. 11, 1572–1579 (1980)zbMATHGoogle Scholar
  13. 13.
    Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic (2001).Google Scholar
  14. 14.
    Tayebi A., Azizpour E., Esrafilian E.: On a family of connections in Finsler geometry. Publ. Math. Debrecen 72, 1–15 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Tayebi A., Najafi B.: Shen’s processes on Finslerian connection theory. Bull. Iran. Math. Soc. 36, 57–73 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Tayebi A., Peyghan E.: On Ricci tensors of Randers metrics. J. Geometry and Physics 60, 1665–1670 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Faculty of Science, Department of MathematicsModares UniversityTehranIran
  2. 2.Department of Mathematics, Faculty of ScienceArak UniversityArakIran
  3. 3.Faculty of Science, Department of MathematicsUniversity of QomQomIran

Personalised recommendations