Acta Mathematica Hungarica

, Volume 144, Issue 2, pp 515–529 | Cite as

Unified presentation of p-adic L-functions associated with unification of the special numbers

  • H. Ozden
  • Y. SimsekEmail author


By using partial differential equations (PDEs) of the generating functions for the unification of the Bernoulli, Euler and Genocchi polynomials and numbers, we derive many new identities and recurrence relations for these polynomials and numbers. In [33], Srivastava et al. defined a unified presentation of certain meromorphic functions related to the families of the partial zeta type functions. By using these functions, we construct p-adic functions which are related to the partial zeta type functions. By applying these p-adic function, we construct unified presentation of p-adic L-functions. These functions give us generalization of the Kubota–Leopoldt p-adic L-functions, which are related to the Bernoulli numbers and the other p-adic L-functions, which are related to the Euler numbers and polynomials. We also give some remarks and comments on these functions.

Key words and phrases

Bernoulli number and polynomial Euler number and polynomial Genocchi number and polynomial Riemann and Hurwitz (or generalized) zeta function partial zeta type function p-adic function p-adic L-function partial differential equation (PDE) generating function 

Mathematics Subject Classification

11B68 11S40 11S80 11M99 30B50 44A05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. Cangul, H. Ozden and Y. Simsek, Generating functions of the (h, q) extension of twisted Euler polynomials and numbers, Acta Math. Hungar., 120 (2008), 281–299.CrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Cenkci, Y. Simsek and V. Kurt, Further remarks on multiple p-adic q-L-function of two variables, Adv. Stud. Contep. Math., 14 (2007), 49–68.zbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Dere, Y. Simsek and H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133 (2013), 3245–3263.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    J. Diamond, The p-adic log gamma function and p-adic Euler constant, Trans. Amer. Math. Soc., 233 (1977), 321–337.zbMATHMathSciNetGoogle Scholar
  5. 5.
    B. Ferrero and R. Greenberg, On the behavior of p-adic L-function at s = 0, Invent. Math., 50 (1978), 91–102.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    G. J. Fox, A p-adic L-function of two variables, Enseign. Math., II. Sér., 46 (2000), 225–278.zbMATHGoogle Scholar
  7. 7.
    K. Iwasawa, On p-adic L-functions, Ann. of. Math., 89 (1969), 239–247.CrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Iwasawa, Lectures on p-adic L-function, Princeton Univ. Press (1972).Google Scholar
  9. 9.
    M.-S. Kim, S. Hu, A note on the Apostol–Bernoulli and Apostol–Euler Polynomials, Publ. Math. Debrecen, 83 (2013), 1–16.CrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Kim, On explicit formulas of p-adic q-L-function, Kyushu J. Math., 48 (1994), 73–86.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    T. Kim, On p-adic q-L-function and sums of powers, Discrete Math., 252 (2002), 179–187.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Kim, Power series and asymptotic series associated with the q-analogue of twovariable p-adic L-function, Russ. J. Math Phys., 12 (2005), 186–196.zbMATHMathSciNetGoogle Scholar
  13. 13.
    T. Kim, A new approach to p-adic q-L-function, Adv. Stud. Contep. Math., 12 (2006), 61–72.zbMATHGoogle Scholar
  14. 14.
    N. Koblitz, A new proof of certain formulas for p-adic L-function, Duke Math. J., 46 (1979), 455–468.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    T. Kubota and H. M. Leopoldt, Eine p-adische theorie der zetawerte I, J. Reine Angew. Math., 2(14/215) (1964), 328–339.MathSciNetGoogle Scholar
  16. 16.
    H. Ozden, Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials, Amer. Inst. Phys. Conf. Proc., 1281 (2010), 1125–1128.Google Scholar
  17. 17.
    H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett., 21 (2008), 934–939.CrossRefMathSciNetGoogle Scholar
  18. 18.
    H. Ozden and Y. Simsek, Interpolation function of the (h, q)-extension of twisted Euler numbers, Comput. Math. Appl., 56 (2008), 898–908.CrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Ozden, Y. Simsek and H. M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 60 (2010), 2779–2787.CrossRefMathSciNetGoogle Scholar
  20. 20.
    H. Ozden and Y. Simsek, Unified representation of the family of L-functions, J. Inequalities Appl., 64 (2013).Google Scholar
  21. 21.
    H. Ozden, I. N. Cangul and Y. Simsek, On the behavior of two variable twisted p-adic Euler q-L-function, Nonlinear Anal., 71 (2009), e942–e951.CrossRefMathSciNetGoogle Scholar
  22. 22.
    C. Rakaczki and A. Pintér, On the zeros of shifted Bernoulli polynomials, Appl. Math. Comput., 187 (2007), 379–383.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    K. Shiratani, On certain values of p-adic L-function, Mem. Fac. Kyushu Univ. Series A, Mathematics, 28 (1974), 59–82.zbMATHMathSciNetGoogle Scholar
  24. 24.
    Y. Simsek, On q-analogue of the twisted L-function and q-twisted Bernoulli numbers, J. Korean Math. Soc., 40 (2003), 963–975.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Y. Simsek, q-analogue of the twisted l-series and q-twisted Euler numbers, J. Number Theory, 110 (2005), 267–278.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)- zeta function and L-function, J. Math. Anal. Appl., 324 (2006), 790–804.CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput., 187 (2007), 466–473.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Y. Simsek, On p-adic twisted q-L-function related to generalized twisted Bernoulli numbers, Russian J. Math. Phys., 13 (2006), 340–348.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Y. Simsek, Twisted p-adic (h, q)-L-functions, Computers Math. Appl., 59 (2010), 2097–2110.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Y. Simsek and H. M. Srivastava, A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers, Appl. Math. Comput., 216 (2010), 2976–2987.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math Phys., 12 (2005), 241–268.zbMATHMathSciNetGoogle Scholar
  32. 32.
    H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers (Amsterdam, London, New York, 2012).Google Scholar
  33. 33.
    H. M. Srivastava, H. Ozden, I. N. Cangul and Y. Simsek, A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the L-functions, Appl. Math. Comput., 219 (2012), 3903–3913.CrossRefMathSciNetGoogle Scholar
  34. 34.
    H. M. Srivastava and A. Pintér, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett., 17 (2004), 375–380.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag (1st ed.), (1982).Google Scholar
  36. 36.
    P. T. Young, On the behavior of some two-variable p-adic L-function, J. Number Theory, 98 (2003), 67–86.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Department of MathematicsFaculty of Art and Science University of UludagBursaTurkey
  2. 2.Department of Mathematics, Faculty of ScienceAkdeniz UniversityAntalyaTurkey

Personalised recommendations