Acta Mathematica Hungarica

, Volume 143, Issue 2, pp 351–366 | Cite as

Annihilator Methods in Discrete Spectral Synthesis

  • L. SzékelyhidiEmail author


Spectral synthesis deals with the description of translation invariant function spaces on groups. On commutative Abelian groups the basic building bricks of spectral synthesis are the exponential monomials. In this paper we exhibit some methods which can be used to characterize exponential monomials and related function classes using ring-theoretical tools, like modified differences and annihilators.

Key words and phrases

polynomial function spectral synthesis Noetherian ring 

Mathematics Subject Classification

16P40 39A70 39A99 43A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Jacobson, Basic Algebra I, II, W. H. Freeman and Company (New York, 1989).Google Scholar
  2. 2.
    Laczkovich M., Székelyhidi G.: Harmonic analysis on discrete Abelian groups. Proc. Amer. Math. Soc., 133, 1581–1586 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Laczkovich and L. Székelyhidi, Spectral synthesis on discrete Abelian groups, Math. Proc. Camb. Phil. Soc., 143 (2007), 103–120.Google Scholar
  4. 4.
    H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press (Cambridge, 1989).Google Scholar
  5. 5.
    L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific Publishing Co. Pte. Ltd. (Singapore, New Jersey, London, Hong Kong, 1991).Google Scholar
  6. 6.
    L. Székelyhidi, Discrete Spectral Synthesis and Its Applications, Springer Monographs in Mathematics, Springer (Dordrecht, 2006).Google Scholar
  7. 7.
    L. Székelyhidi, The Levi-Civitá equation vector modules and spectral synthesis, in: Recent Developments in Functional Equations and Inequalities, Banach Center Publications, vol. 99 (2013), pp. 193–206.Google Scholar
  8. 8.
    L. Székelyhidi, A characterization of exponential polynomials, to appear in Publ. Math. Debrecen.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Institute of Mathematics, University of DebrecenDebrecenHungary
  2. 2.Department of Mathematics, University of BotswanaDebrecenHungary

Personalised recommendations