Acta Mathematica Hungarica

, Volume 143, Issue 1, pp 119–137 | Cite as

Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights

  • H. Aimar
  • M. CarenaEmail author
  • R. Durán
  • M. Toschi


Let (X, dμ) be an Ahlfors metric measure space. We give sufficient conditions on a closed set \({F \subseteqq X}\) and on a real number β in such a way that d(x, F) β becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and regarding some classical fractals.

Keywords and phrases

Ahlfors space Hardy–Littlewood maximal operator Muckenhoupt weight Hausdorff measure 

Mathematics Subject Classification

primary 28A25 secondary 28A78 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patrice Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans R n, C.R. Acad. Sci. Paris Sér. A-B, 288 (1979), A731–A734.Google Scholar
  2. 2.
    Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Springer-Verlag, Étude de certaines intégrales singuli‘ eres, Lecture Notes in Mathematics, Vol. 242 (Berlin, 1971).Google Scholar
  3. 3.
    Miguel de Guzmán, Real variable methods in Fourier analysis, volume 46 of North- Holland Mathematics Studies, North-Holland Publishing Co. (Amsterdam, 1981).Google Scholar
  4. 4.
    Ricardo G. Durán and Fernando López García, Solutions of the divergence and analysis of the Stokes equations in planar Hölder-α domains, Math. Models Methods Appl. Sci. 20 (2010), 95–120.Google Scholar
  5. 5.
    Dall’Acqua A., Sweers G.: Estimates for Green function and Poisson kernels of higher-order Dirichlet boundary value problems. J. Differential Equations 205, 466–487 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Durán R. G., Sanmartino M., Toschi M.: Weighted a priori estimates for the Poisson equation. Indiana Univ. Math. J. 57, 3463–3478 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ricardo G. Durán, Marcela Sanmartino and Marisa Toschi, Weighted a priori estimates for solution of \({(\Delta)^{m}u = f}\) with homogeneous Dirichlet conditions, Anal. Theory Appl., 26 (2010), 339–349.Google Scholar
  8. 8.
    Javier Duoandikoetxea, Fourier Analysis, volume 29 of Graduate Studies in Mathematics, American Mathematical Society (Providence, RI, 2001). Translated and revised from the 1995 Spanish original by David Cruz-Uribe.Google Scholar
  9. 9.
    K. J. Falconer, The Geometry of Fractal Sets, Volume 85 of Cambridge Tracts in Mathematics, Cambridge University Press (Cambridge, 1986).Google Scholar
  10. 10.
    José García-Cuerva and José L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Volume 116 of North-Holland Mathematics Studies, North- Holland Publishing Co. (Amsterdam, 1985), Notas de Matemática [Mathematical Notes], 104.Google Scholar
  11. 11.
    Misha Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Modern Birkhäuser Classics. Birkhäuser Boston Inc. (Boston, MA, 2007). Based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates.Google Scholar
  12. 12.
    Peter W. Jones, Factorization of A p weights, Ann. of Math., 111 (1980), 511–530.Google Scholar
  13. 13.
    Svitlana Mayboroda and Vladimir Maz’ya, Pointwise estimates for the polyharmonic Green function in general domains, in: Analysis, Partial Differential Equations and Applications, Volume 193 of Oper. Theory Adv. Appl. (Birkhäuser Verlag, Basel, 2009), pp. 143–158.Google Scholar
  14. 14.
    Umberto Mosco, Variational fractals, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1998), 683–712. Dedicated to Ennio De Giorgi.Google Scholar
  15. 15.
    Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math., 33 (1979), 257–270.Google Scholar
  16. 16.
    Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226.Google Scholar
  17. 17.
    Tord Sjödin, On s-sets and mutual absolute continuity of measures on homogeneous spaces, Manuscripta Math., 94 (1997), 169–186.Google Scholar
  18. 18.
    Ph. Souplet, A survey on \({L^{p}_\delta}\) spaces and their applications to nonlinear elliptic and parabolic problems, in: Nonlinear Partial Differential Equations and Their Applications, volume 20 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho (Tokyo, 2004), pp. 464–479.Google Scholar
  19. 19.
    Hans Triebel, Fractals and Spectra, Modern Birkhäuser Classics. Birkhäuser Verlag (Basel, 2011).Google Scholar
  20. 20.
    A. L. Vol’berg and S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 666–675.Google Scholar
  21. 21.
    Jang-Mei Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc., 126 (1998), 1453–1459.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Instituto de Matemática Aplicada del Litoral (CONICET-UNL), Departamento de Matemática (FIQ-UNL)Santa FeArgentina
  2. 2.Instituto de Matemática Aplicada del Litoral (CONICET-UNL), Departamento de Matemática (FHUC-UNL)Santa FeArgentina
  3. 3.Instituto de Investigaciones Matemáticas “Luis A. Santaló” (CONICET-UBA), Departamento de Matemática (UBA)Buenos AiresArgentina

Personalised recommendations