Acta Mathematica Hungarica

, Volume 142, Issue 1, pp 199–230

The Gauss–Wilson theorem for quarter-intervals



We define a Gauss factorial Nn! to be the product of all positive integers up to N that are relatively prime to n. It is the purpose of this paper to study the multiplicative orders of the Gauss factorials \(\left\lfloor\frac{n-1}{4}\right\rfloor_{n}!\) for odd positive integers n. The case where n has exactly one prime factor of the form p≡1(mod4) is of particular interest, as will be explained in the introduction. A fundamental role is played by p with the property that the order of \(\frac{p-1}{4}!\) modulo p is a power of 2; because of their connection to two different results of Gauss we call them Gauss primes. Our main result is a complete characterization in terms of Gauss primes of those n of the above form that satisfy \(\left\lfloor\frac{n-1}{4}\right\rfloor_{n}!\equiv 1\pmod{n}\). We also report on computations that were required in the process.

Key words and phrases

Wilson’s theorem Gauss’ theorem factorial congruence 

Mathematics Subject Classification

11A07 11B65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Wiley (New York, 1998). MATHGoogle Scholar
  2. [2]
    J. B. Cosgrave and K. Dilcher, Extensions of the Gauss–Wilson theorem, Integers, 8 (2008), A39, available at
  3. [3]
    J. B. Cosgrave and K. Dilcher, Mod p 3 analogues of theorems of Gauss and Jacobi on binomial coefficients, Acta Arith., 142 (2010), 103–118. CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    J. B. Cosgrave and K. Dilcher, The multiplicative orders of certain Gauss factorials, Int. J. Number Theory, 7 (2011), 145–171. CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810–828. MathSciNetGoogle Scholar
  6. [6]
    J. B. Cosgrave and K. Dilcher, The multiplicative orders of certain Gauss factorials, II, in preparation. Google Scholar
  7. [7]
    R. E. Crandall, A general purpose factoring program. Perfectly Scientific – the algorithm company, available from
  8. [8]
    L. E. Dickson, History of the Theory of Numbers. Volume I: Divisibility and Primality, Chelsea (New York, 1966). Google Scholar
  9. [9]
    P. Gaudry, A. Kruppa, F. Morain, L. Muller, E. Thomé and P. Zimmermann, cado-nfs, An Implementation of the Number Field Sieve Algorithm. Release 1.0, available from
  10. [10]
    H. W. Gould, Combinatorial Identities, revised ed., Gould Publications (Morgantown, W.Va, 1972). MATHGoogle Scholar
  11. [11]
    D. H. Lehmer, The distribution of totatives, Canad. J. Math., 7 (1955), 347–357. CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    L. J. Mordell, The congruence (p−1/2)!≡±1(modp), Amer. Math. Monthly, 68 (1961), 145–146. CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    F. Morain, Private communication (2006). Google Scholar
  14. [14]
    I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley (1991). Google Scholar
  15. [15]
    The On-Line Encyclopedia of Integer Sequences,
  16. [16]
    P. Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag (New York, 2004). MATHGoogle Scholar
  17. [17]
    E. W. Weisstein, Lucas Sequence. From MathWorld – A Wolfram Web Resource,
  18. [18]
    H. C. Williams, Édouard Lucas and Primality Testing, Wiley (1998). MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Blackrock, County DublinIreland
  2. 2.Department of Mathematics and StatisticsDalhousie UniversityHalifax, Nova ScotiaCanada

Personalised recommendations