Acta Mathematica Hungarica

, Volume 140, Issue 3, pp 203–231 | Cite as

Baire generalized topological spaces, generalized metric spaces and infinite games

  • Ewa Korczak-Kubiak
  • Anna Loranty
  • Ryszard J. Pawlak
Article

Abstract

Different generalizations of topological Baire spaces to the case of generalized topological spaces are considered and the properties of such spaces are examined. In particular, these considerations are focused on the relationship between Baire generalized topological spaces and semi-continuous real functions and infinite games. The notion of generalized metric spaces corresponding to generalized topological spaces is introduced as an important tool in this discussion.

Key words and phrases

generalized topological space Baire property semi-continuous function generalized metric space set valued function Banach–Mazur game set function game 

Mathematics Subject Classification

54A05 54C30 91A05 91A06 54C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Borsik, Generalized oscillations for generalized continuities, Tatra Mt. Math. Publ., 49 (2011), 119–125. MathSciNetMATHGoogle Scholar
  2. [2]
    J. Borsik, Points of generalized continuities, to appear. Google Scholar
  3. [3]
    A. M. Bruckner, Differentiation of Real Functions, CRM Monograph Series, 5, American Mathematical Society (Providence, RI, 1994). MATHGoogle Scholar
  4. [4]
    Z. Buczolich, Singularity spectrum of generic α-Hölder regular functions after time subordination, J. Fourier Anal. Appl., 17 (2011), 457–485. MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65–87. MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357. MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53–66. MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    E. Ekici, Generalized hyperconnectedness, Acta Math. Hungar., 133 (2011), 140–147. MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    J. Ewert, Note on limits of simply continuous and cliquish functions, Internat. J. Math. Math. Sci., 17 (1994), 447–450. MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    J. Ewert, Characterization of cliquish functions, Acta Math. Hungar., 89 (2000), 269–276. MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Z. Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Math. J., 11 (1961), 237–248. MathSciNetGoogle Scholar
  12. [12]
    Z. Grande and E. Strońska, Some continuous operations on pairs of cliquish functions, Tatra Mt. Math. Publ., 44 (2009), 15–25. MathSciNetMATHGoogle Scholar
  13. [13]
    R. Haworth and R. McCoy, Baire space, Dissertationes Math., 141 (1997), 1–77. Google Scholar
  14. [14]
    A. Kanibir and L. L. Reilly, Generalized continuity for multifunctions, Acta Math. Hungar., 122 (2009), 283–292. MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., (3) 13 (1963), 71–89. MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. R. Krom, Infinite games and special Baire space extensions, Pacific J. Math., 55 (1974), 483–487. MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    A. Loranty and R. J. Pawlak, On the transitivity of multifunction and density of orbits in generalized topological spaces, Acta Math. Hungar., 135 (2012), 56–66. MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    A. Maliszewski, Darboux property and quasi-continuity, habilitation thesis, Słupsk, 1996. Google Scholar
  19. [19]
    W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., 128 (2010), 299–306. MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    W. K. Min and Y. K. Kim, Quasi generalized open sets and quasi generalized continuity on bigeneralized topological spaces, Honam Math. J., 32 (2010), 619–624. MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    W. K. Min and Y. K. Kim, A note on weak quasi generalized continuity on bigeneralized topological spaces, Journal of the Chungcheong Mathematical Society, 24 (2011), 409–415. Google Scholar
  22. [22]
    A. Neubrunnová, On quasicontinuous and cliquish functions, Časopis Pěst. Mat., 99 (1974), 109–114. MATHGoogle Scholar
  23. [23]
    J. C. Oxtoby, Measure and Category, Springer-Verlag (New York, 1980). MATHCrossRefGoogle Scholar
  24. [24]
    H. Pawlak and R. J. Pawlak, Transitivity, dense orbits and some topologies finer than the natural topology of the unit interval, Tatra Mt. Math. Publ., 35 (2007), 1–12. MathSciNetMATHGoogle Scholar
  25. [25]
    R. J. Pawlak and A. Loranty, The generalized entropy in the generalized topological spaces, Topology Appl., 159 (2012), 1734–1742. MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    I. L. Reilly, On bitopological separation properties, Nanta Math., 2 (1972), 14–25. MathSciNetGoogle Scholar
  27. [27]
    J. P. Revalski, The Banach–Mazur Game: History and Recent Developments, Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Seminar notes (Pointe-a-Pitre, Guadeloupe, France, 2003–2004), http://www1.univ-ag.fr/aoc/activite/revalski/.
  28. [28]
    Ch. Richter and I. Stephani, Cluster sets and approximation properties of quasi-continuous and cliquish functions, Real Anal. Exchange, 29 (2003/04), 299–321. MathSciNetGoogle Scholar
  29. [29]
    R. Telgársky, Topological games: on the 50th anniversary of the Banach–Mazur game, Rocky Mountain J. Math., 17 (1987), 227–276. MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    H. P. Thielman, Types of functions, Amer. Math. Monthly, 60 (1953), 156–161. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Ewa Korczak-Kubiak
    • 1
  • Anna Loranty
    • 1
  • Ryszard J. Pawlak
    • 1
  1. 1.Łódź UniversityFaculty of Mathematics and Computer ScienceŁódźPoland

Personalised recommendations