Acta Mathematica Hungarica

, Volume 138, Issue 3, pp 237–258 | Cite as

Inversion formulas for the continuous wavelet transform

  • Ferenc Weisz


The inversion formula for the continuous wavelet transform is usually considered in the weak sense. In the present note we investigate the norm and a.e. convergence of the inversion formula in L p and Wiener amalgam spaces. The summability of the inversion formula is also considered.

Key words and phrases

continuous wavelet transform Wiener amalgam space Herz space θ-summability short-time Fourier transform inversion formula 

Mathematics Subject Classification

42C15 42B08 42C40 42A38 46B15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser Verlag (Basel, 1971). zbMATHCrossRefGoogle Scholar
  2. [2]
    L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135–157. MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    I. Daubechies, Ten Lectures on Wavelets, SIAM (Philadelphia, 1992). zbMATHCrossRefGoogle Scholar
  4. [4]
    C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc., 77 (1971), 744–745. MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    H. G. Feichtinger and F. Weisz, Inversion formulas for the short-time Fourier transform, J. Geom. Anal., 16 (2006), 507–521. MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    H. G. Feichtinger and F. Weisz, The Segal algebra S 0(ℝd) and norm summability of Fourier series and Fourier transforms, Monatshefte Math., 148 (2006), 333–349. MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    H. G. Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Camb. Phil. Soc., 140 (2006), 509–536. MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    H. G. Feichtinger and F. Weisz, Gabor analysis on Wiener amalgams, Sampl. Theory Signal Image Process, 6 (2007), 129–150. MathSciNetzbMATHGoogle Scholar
  9. [9]
    L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education (New Jersey, 2004). zbMATHGoogle Scholar
  10. [10]
    K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser (Boston, 2001). zbMATHGoogle Scholar
  11. [11]
    K. Gröchenig and C. Heil, Gabor meets Littlewood–Paley: Gabor expansions in L p(R d), Studia Math., 146 (2001), 15–33. MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    K. Gröchenig, C. Heil and K. Okoudjou, Gabor analysis in weighted amalgam spaces, Sampl. Theory Signal Image Process, 1 (2002), 225–259. MathSciNetzbMATHGoogle Scholar
  13. [13]
    C. Heil, An introduction to weighted Wiener amalgams, in: M. Krishna, R. Radha, and S. Thangavelu (Eds.) Wavelets and their Applications, Allied Publishers Private Limited (2003), pp. 183–216. Google Scholar
  14. [14]
    S. E. Kelly, M. A. Kon and L. A. Raphael, Local convergence for wavelet expansions, J. Func. Anal., 126 (1994), 102–138. MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    S. E. Kelly, M. A. Kon and L. A. Raphael, Pointwise convergence of wavelet expansions, Bull. Amer. Math. Soc., 30 (1994), 87–94. MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    K. Li and W. Sun, Pointwise convergence of the Calderon reproducing formula, J. Fourier Anal. Appl. (to appear). Google Scholar
  17. [17]
    M. Rao, H. Sikic and R. Song, Application of Carleson’s theorem to wavelet inversion, Control Cybern., 23 (1994), 761–771. MathSciNetzbMATHGoogle Scholar
  18. [18]
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press (Princeton, N.J., 1971). zbMATHGoogle Scholar
  19. [19]
    R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers (Dordrecht, Boston, London, 2004). zbMATHCrossRefGoogle Scholar
  20. [20]
    F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications, Kluwer Academic Publishers (Dordrecht, Boston, London, 2002). Google Scholar
  21. [21]
    F. Weisz, Wiener amalgams, Hardy spaces and summability of Fourier series, Math. Proc. Camb. Phil. Soc., 145 (2008), 419–442. MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    F. Weisz, 1-summability of d-dimensional Fourier transforms, Constr. Approx., 34 (2011), 421–452. MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    F. Weisz, Marcinkiewicz-summability of more-dimensional Fourier transforms and Fourier series, J. Math. Anal. Appl., 379 (2011), 910–929. MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    M. Wilson, Weighted Littlewood–Paley Theory and Exponential-Square Integrability, Lecture Notes in Mathematics 1924, Springer (Berlin, 2008). zbMATHGoogle Scholar
  25. [25]
    M. Wilson, How fast and in what sense(s) does the Calderon reproducing formula converge?, J. Fourier Anal. Appl., 16 (2010), 768–785. MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    A. Zygmund, Trigonometric Series, 3rd ed., Cambridge University Press (London, 2002). zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Numerical AnalysisEötvös L. UniversityBudapestHungary

Personalised recommendations