Purely periodic expansions in systems with negative base
- 96 Downloads
- 3 Citations
Abstract
We study the question of pure periodicity of expansions in the negative base numeration system. In analogy of Akiyama’s result for positive Pisot unit base β, we find a sufficient condition so that there exist an interval J containing the origin such that the (−β)-expansion of every rational number from J is purely periodic. We focus on the case of quadratic bases and demonstrate the following difference between the negative and positive bases: It is known that the finiteness property (\(\mathop {\mathrm {Fin}}\nolimits \, (\beta)= {\mathbb {Z}}[\beta]\)) is not only sufficient, but also necessary in the case of positive quadratic and cubic bases. We show that \(\mathop {\mathrm {Fin}}\nolimits \, (-\beta)= {\mathbb {Z}}[\beta]\) is not necessary in the case of negative bases.
Key words and phrases
negative base periodic expansions Pisot numbersMathematics Subject Classification
11K16 11A63Preview
Unable to display preview. Download preview PDF.
References
- [1]B. Adamczewski, Ch. Frougny, A. Siegel and W. Steiner, Rational numbers with purely periodic beta-expansion, Bull. Lond. Math. Soc., 42 (2010), 538–552. MathSciNetMATHCrossRefGoogle Scholar
- [2]S. Akiyama, Cubic Pisot units with finite beta expansions, in: F. Halter-Koch and R. F. Tichy (Eds.), Algebraic Number Theory and Diophantine Analysis, de Gruyter (2000), pp. 11–26. Google Scholar
- [3]S. Akiyama, Pisot numbers and greedy algorithm, in: Number Theory (Eger, 1996), de Gruyter (Berlin, 1998), pp. 9–21. Google Scholar
- [4]S. Akiyama, G. Barat, V. Berthé and A. Siegel, Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions, Monatsh. Math., 155 (2008), 377–419. MathSciNetMATHCrossRefGoogle Scholar
- [5]P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base, to appear in Funct. Approx. (2012), http://arxiv.org/abs/0912.4597.
- [6]D. Dombek, Substitutions over infinite alphabet generating (−β)-integers, in: Proceedings WORDS 2011, EPTCS 63, (2011), pp. 115–121. Google Scholar
- [7]M. Hama and T. Imahashi, Periodic β-expansions for certain classes of Pisot numbers, Comment. Math. Univ. St. Paul., 46 (1997), 103–116. MathSciNetMATHGoogle Scholar
- [8]S. Ito and T. Sadahiro, (−β)-expansions of real numbers, Integers, 9 (2009), 239–259. MathSciNetMATHCrossRefGoogle Scholar
- [9]Ch. Frougny and A. C. Lai, On negative bases, in: Proceedings of DLT 09, Lectures Notes in Computer Science (2009), p. 5583. Google Scholar
- [10]L. Liao and W. Steiner, Dynamical properties of the negative beta transformation, to appear in Ergod. Theor. Dyn. Syst. (2012). Google Scholar
- [11]Z. Masáková and E. Pelantová, Ito-Sadahiro numbers vs. Parry numbers, Acta Polytechnica, 51 (2011), 59–64. Google Scholar
- [12]Z. Masáková, E. Pelantová and T. Vávra, Arithmetics in number systems with negative base, Theor. Comp. Sci., 412 (2011), 835–845. MATHCrossRefGoogle Scholar
- [13]Z. Masáková and T. Vávra, Arithmetics in number systems with negative quadratic base, Kybernetika, 47 (2011), 74–92. MathSciNetMATHGoogle Scholar
- [14]W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11 (1960), 401–416. MathSciNetMATHCrossRefGoogle Scholar
- [15]A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8 (1957), 477–493. MATHCrossRefGoogle Scholar
- [16]K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. Lond. Math. Soc., 12 (1980), 269–278. MATHCrossRefGoogle Scholar
- [17]W. Steiner, On the Delone property of (−β)-integers, in: Proceedings WORDS 2011, EPTCS 63 (2011), pp. 247–256. Google Scholar
- [18]W. Steiner, On the structure of (−β)-integers, RAIRO – Theor. Inf. Appl., 46 (2012), 181–200. MATHCrossRefGoogle Scholar