Advertisement

Acta Mathematica Hungarica

, Volume 135, Issue 1–2, pp 80–96 | Cite as

Weakly Z-symmetric manifolds

  • Carlo Alberto Mantica
  • Luca Guido MolinariEmail author
Article

Abstract.

We introduce a new kind of Riemannian manifold that includes weakly-, pseudo- and pseudo projective Ricci symmetric manifolds. The manifold is defined through a generalization of the so called Z tensor; it is named weakly Z-symmetric and is denoted by (WZS) n . If the Z tensor is singular we give conditions for the existence of a proper concircular vector. For non singular Z tensors, we study the closedness property of the associated covectors and give sufficient conditions for the existence of a proper concircular vector in the conformally harmonic case, and the general form of the Ricci tensor. For conformally flat (WZS) n manifolds, we derive the local form of the metric tensor.

Key words and phrases

weakly-Ricci symmetric manifold pseudo- projective Ricci symmetric conformal curvature tensor quasi conformal curvature tensor conformally symmetric conformally recurrent Riemannian manifolds weakly Z-symmetric manifold 

2010 Mathematics Subject Classification

53B20 53B21 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Adati, On subprojective spaces-III, Tohoku Math. J., 3 (1951), 343–358. MathSciNetCrossRefGoogle Scholar
  2. [2]
    K. Arslan, R. Ezentas, C. Murathan and C. Ozgur, On pseudo Ricci-symmetric manifolds, Differ. Geom. Dyn. Syst., 3 (2001), 1–5. MathSciNetzbMATHGoogle Scholar
  3. [3]
    A. L. Besse, Einstein Manifolds, Springer (1987). zbMATHGoogle Scholar
  4. [4]
    M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 15 (1988), 525–531. MathSciNetGoogle Scholar
  5. [5]
    M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor (N.S), 68 (2007), 10–14. MathSciNetzbMATHGoogle Scholar
  6. [6]
    M. C. Chaki and S. Koley, On generalized pseudo Ricci symmetric manifolds, Period. Math. Hung., 28 (1994), 123–129. MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen57 (2000), 257–306. MathSciNetGoogle Scholar
  8. [8]
    M. C. Chaki and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulg. J. Phys., 21 (1994), 1–7. MathSciNetzbMATHGoogle Scholar
  9. [9]
    U. C. De, N. Guha and D. Kamilya, On generalized Ricci recurrent manifolds, Tensor (N.S.), 56 (1995), 312–317. MathSciNetzbMATHGoogle Scholar
  10. [10]
    U. C. De and B. K. De, On conformally flat generalized pseudo Ricci symmetric manifolds, Soochow J. Math., 23 (1997), 381–389. MathSciNetzbMATHGoogle Scholar
  11. [11]
    U. C. De and A. K. Gazi, On conformally flat almost pseudo Ricci symmetric manifolds, Kyungpook Math. J., 49 (2009), 507–520. MathSciNetzbMATHGoogle Scholar
  12. [12]
    U. C. De and G. K. Ghosh, Some global properties of weakly Ricci symmetric manifolds, Soochow J. Math., 31 (2005), 83–93. MathSciNetzbMATHGoogle Scholar
  13. [13]
    U. C. De and S. K. Ghosh, On conformally flat pseudo symmetric manifolds, Balkan J. Geom. Appl., 5 (2000), 61–64. MathSciNetzbMATHGoogle Scholar
  14. [14]
    F. De Felice and C. J. S. Clarke, Relativity on Curved Manifolds, Cambridge University Press (1990). zbMATHGoogle Scholar
  15. [15]
    F. Defever and R. Deszcz, On semi Riemannian manifolds satisfying the condition RR=Q(S,R), in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci. (Singapore, 1991), pp. 108–130. Google Scholar
  16. [16]
    A. Derdzinski and C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. Lond. Math. Soc., 47 (1983), 15–26. MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg., Series A, 44 (1992), 1–34. MathSciNetzbMATHGoogle Scholar
  18. [18]
    L. P. Eisenhart, Non Riemaniann Geometry, reprint Dover Ed. (2005). Google Scholar
  19. [19]
    A. Gebarowsky, Nearly conformally symmetric warped product manifolds, Bull. Inst. Math., Acad. Sin., 20 (1992), 359–371. Google Scholar
  20. [20]
    S. K. Jana and A. A. Shaikh, On quasi conformally flat weakly Ricci symmetric manifolds, Acta Math. Hungar., 115 (2007), 197–214. MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Q. Khan, On recurrent Riemannian manifolds, Kyungpook Math. J., 44 (2004), 269–276. MathSciNetzbMATHGoogle Scholar
  22. [22]
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry 1, Interscience (New York, 1963). zbMATHGoogle Scholar
  23. [23]
    D. Lovelock and H. Rund, Tensors, differential forms and variational principles, reprint Dover Ed. (1988). Google Scholar
  24. [24]
    C. A. Mantica and L. G. Molinari, A second order identity for the Riemann tensor and applications, Colloq. Math., 122 (2011), 69–82, arXiv:0802.0650v2 [math.DG], 9 Jul 2009 MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    C. A. Mantica and L. G. Molinari, Extended Derdzinski–Shen theorem for the Riemann tensor, arXiv:1101.4157 [math.DG], 21 Jan 2011.
  26. [26]
    R. S. Mishra, Structures on a Differentiable Manifold and their Applications, Chandrama Prakashan (Allahabad, 1984). zbMATHGoogle Scholar
  27. [27]
    M. M. Postnikov, Geometry VI, Riemannian Geometry, Encyclopaedia of Mathematical Sciences 91, Springer (2001). zbMATHGoogle Scholar
  28. [28]
    J. A. Shouten, Ricci-Calculus, 2nd ed. Springer Verlag (1954). Google Scholar
  29. [29]
    W. Roter, On a generalization of conformally symmetric metrics, Tensor (N.S.), 46 (1987), 278–286. zbMATHGoogle Scholar
  30. [30]
    H. Singh and Q. Khan, On symmetric manifolds, Novi Sad J. Math., 29 (1999), 301–308. MathSciNetzbMATHGoogle Scholar
  31. [31]
    L. Tamássy and T. Q. Binh, On weakly symmetries of Einstein and Sasakian manifolds, Tensor (N.S.), 53 (1993), 140–148. MathSciNetzbMATHGoogle Scholar
  32. [32]
    K. Yano, Concircular geometry I, concircular trasformations, Proc. Imp. Acad. Tokyo, 16 (1940), 195–200. MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    K. Yano, On the torseforming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20 (1944), 340–345. MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differ. Geom., 2 (1968), 161–184. MathSciNetzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversità degli Studi di Milano and I.N.F.N.MilanoItaly

Personalised recommendations