Acta Mathematica Hungarica

, Volume 134, Issue 1–2, pp 99–114

Approximations of ternary Jordan homomorphisms and derivations in multi-C ternary algebras

  • Donal O’Regan
  • John Michael Rassias
  • Reza Saadati


Using fixed point methods, we prove the generalized Hyers–Ulam stability of homomorphisms in multi-C ternary algebras and of derivations on multi-C ternary algebras for the additive functional equation
$$\sum_{i=1}^{m}f \bigg(mx_i+\sum_{j=1,\ j\ne i}^{m}x_j\bigg)+ f\bigg(\sum_{i=1}^{m}x_i\bigg)= 2f\bigg(\sum_{i=1}^{m}mx_i\bigg) \quad (m\in {\mathbb{N}},\ m\geqq2).$$

Key words and phrases

additive functional equation fixed point homomorphism in multi-C ternary algebra generalized Hyers–Ulam stability derivation on multi-C ternary algebra multi-normed space 

2000 Mathematics Subject Classification

39A10 39B72 47H10 46B03 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Donal O’Regan
    • 1
  • John Michael Rassias
    • 2
  • Reza Saadati
    • 3
  1. 1.Department of MathematicsNational University of IrelandGalwayIreland
  2. 2.Section of Mathematics and Informatics, Pedagogical DepartmentNational and Capodistrian University of AthensAthensGreece
  3. 3.Department of Mathematics, Science and Research BranchIslamic Azad UniversityTehranI.R. Iran

Personalised recommendations