Acta Mathematica Hungarica

, Volume 129, Issue 1–2, pp 1–23

On the class of limits of lacunary trigonometric series

Article

Abstract

Let (nk)k≧1 be a lacunary sequence of positive integers, i.e. a sequence satisfying nk+1/nk > q > 1, k ≧ 1, and let f be a “nice” 1-periodic function with ∝01f(x) dx = 0. Then the probabilistic behavior of the system (f(nkx))k≧1 is very similar to the behavior of sequences of i.i.d. random variables. For example, Erdős and Gál proved in 1955 the following law of the iterated logarithm (LIL) for f(x) = cos 2πx and lacunary \( (n_k )_{k \geqq 1} \):
$$ \mathop {\lim \sup }\limits_{N \to \infty } (2N\log \log N)^{1/2} \sum\limits_{k = 1}^N {f(n_k x)} = \left\| f \right\|_2 $$
(1)
for almost all x ∈ (0, 1), where ‖f2 = (∝01f(x)2dx)1/2 is the standard deviation of the random variables f(nkx). If (nk)k≧1 has certain number-theoretic properties (e.g. nk+1/nk → ∞), a similar LIL holds for a large class of functions f, and the constant on the right-hand side is always ‖f2. For general lacunary (nk)k≧1 this is not necessarily true: Erdős and Fortet constructed an example of a trigonometric polynomial f and a lacunary sequence (nk)k≧1, such that the lim sup in the LIL (1) is not equal to ‖f2 and not even a constant a.e. In this paper we show that the class of possible functions on the right-hand side of (1) can be very large: we give an example of a trigonometric polynomial f such that for any function g(x) with sufficiently small Fourier coefficients there exists a lacunary sequence (nk)k≧1 such that (1) holds with √‖f22 + g(x) instead of ‖f2 on the right-hand side.

Key words and phrases

lacunary series law of the iterated logarithm 

2000 Mathematics Subject Classification

primary 11K38, 42A55, 60F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Aistleitner, Diophantine equations and the LIL for the discrepancy of sub-lacunary sequences, Illinois J. Math., to appear.Google Scholar
  2. [2]
    C. Aistleitner, Irregular discrepancy behavior of lacunary series, Monatshefte Math., to appear.Google Scholar
  3. [3]
    C. Aistleitner, Irregular discrepancy behavior of lacunary series II, Monatshefte Math., to appear.Google Scholar
  4. [4]
    C. Aistleitner, On the law of the iterated logarithm for the discrepancy of lacunary sequences, Trans. Amer. Math. Soc., to appear.Google Scholar
  5. [5]
    C. Aistleitner and I. Berkes, On the central limit theorem for f(nkx), Probab. Theory Related Fields, 146 (2010), 267–289.CrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Arias de Reyna, Pointwise Convergence of Fourier Series, Springer-Verlag (Berlin, 2002).MATHGoogle Scholar
  7. [7]
    I. Berkes, A central limit theorem for trigonometric series with small gaps, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 47 (1979), 157–161.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    I. Berkes and W. Philipp, An a.s. invariance principle for lacunary series f(nkx), Acta Math. Acad. Sci. Hung., 34 (1979), 141–155.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    I. Berkes, W. Philipp and R. F. Tichy, Empirical processes in probabilistic number theory: The LIL for the discrepancy of (nkω) mod 1, Illinois J. Math., 50 (2008), 107–145.MathSciNetGoogle Scholar
  10. [10]
    I. Berkes, W. Philipp and R. F. Tichy, Metric discrepancy results for sequences {n k x} and diophantine equations, Diophantine Equations. Festschrift für Wolfgang Schmidt. Developments in Mathematics 17, Springer, pp. 95–105.Google Scholar
  11. [11]
    P. Erdős and I. S. Gál, On the law of the iterated logarithm, Proc. Kon. Nederl. Akad. Wetensch., 58 (1955), 65–84.Google Scholar
  12. [12]
    K. Fukuyama, A law of the iterated logarithm for discrepancies: non-constant limsup, Monatshefte Math., to appear.Google Scholar
  13. [13]
    K. Fukuyama, The law of the iterated logarithm for discrepancies of {θ n x}, Acta Math. Hungar., 118 (2008), 155–170.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Fukuyama and K. Nakata, A metric discrepancy result for the Hardy-Littlewood-Pólya sequences, Monatshefte Math., to appear.Google Scholar
  15. [15]
    K. Fukuyama and S. Takahashi, On limit distributions of trigonometric sums, Rev. Roumaine Math. Pures Appl., 53 (2008), 19–24.MATHMathSciNetGoogle Scholar
  16. [16]
    V. F. Gaposhkin, Lacunary series and independent functions, Russian Math. Surveys, 21 (1966), 3–82.CrossRefGoogle Scholar
  17. [17]
    M. Kac, Probability methods in some problems of analysis and number theory, Bull. Amer. Math. Soc., 55 (1949), 641–665.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    C. J. Mozzochi, On the Pointwise Convergence of Fourier Series, Springer-Verlag (Berlin-New York, 1971).MATHGoogle Scholar
  19. [19]
    W. Philipp, Limit theorems for lacunary series and uniform distribution mod 1, Acta Arith., 26 (1975), 241–251.MATHMathSciNetGoogle Scholar
  20. [20]
    R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. USA, 33 (1947), 333–338.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    V. Strassen, Almost sure behavior of sums of independent random variables and martingales, in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Vol. II: Contributions to Probability Theory (1967), pp. 315–343.Google Scholar
  22. [22]
    S. Takahashi, An asymptotic property of a gap sequence, Proc. Japan Acad., 38 (1962), 101–104.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    S. Takahashi, The law of the iterated logarithm for a gap sequence with infinite gaps, Tohoku Math. J., 15 (1963), 281–288.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Institute of Mathematics AGraz University of TechnologyGrazAustria

Personalised recommendations