Advertisement

Acta Mathematica Hungarica

, Volume 129, Issue 4, pp 303–313 | Cite as

Pure Gaussian limit distributions of trigonometric series with bounded gaps

Article

Abstract

This paper is mainly concerned with the limit distribution of \((\cos 2\pi n_{1}x+\cdots +\cos 2\pi n_{N}x)/\sqrt{N}\) on the unit interval when the increasing sequence {n k } has bounded gaps, i.e., 1≤n k+1n k =O(1). By Bobkov–Götze [4], it was proved that the limiting variance must be less than 1/2 in this case. They proved that the centered Gaussian distribution with variance 1/4 together with mixtures of Gaussian distributions belonging to a huge class can be limit distributions. In this paper it is proved that any Gaussian distribution with variance less than 1/2 can be a limit distribution.

Key words and phrases

lacunary series 

2000 Mathematics Subject Classification

42A55 60F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Berkes, On the central limit theorem for lacunary trigonometric series, Anal. Math., 4 (1978), 159–180. MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    I. Berkes, A central limit theorem for trigonometric series with small gaps, Z. Wahr. verw. Geb., 47 (1979), 157–161. MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Billingsley, Probability and Measure, 3rd. ed., Wiley (New York, 1995). MATHGoogle Scholar
  4. [4]
    S. Bobkov and F. Götze, Concentration inequalities and limit theorems for randomized sums, Prob. Theory Related Fields, 137 (2007), 49–81. MATHCrossRefGoogle Scholar
  5. [5]
    P. Erdös, On trigonometric series with gaps, Magyar Tud. Akad. Mat. Kutató Int. Közl., 7 (1962), 37–42. MATHGoogle Scholar
  6. [6]
    K. Fukuyama, A central limit theorem for trigonometric series with bounded gaps, Prob. Theory Related Fields, to appear. Google Scholar
  7. [7]
    K. Itô, Introduction to Probability Theory, Cambridge Univ. Press (Cambridge, 1984). MATHGoogle Scholar
  8. [8]
    M. Kac, Note on power series with big gaps, Amer. J. Math., 61 (1939), 473–476. CrossRefMathSciNetGoogle Scholar
  9. [9]
    M. Loève, Probability Theory I, 4th ed., Springer (Berlin, 1977). MATHGoogle Scholar
  10. [10]
    R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci., 33 (1947), 333–338. MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta. Math., 91 (1954), 245–301. MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Takahashi, On trigonometric series with gaps, Tôhoku Math. J., 17 (1965), 227–234. MATHCrossRefGoogle Scholar
  13. [13]
    S. Takahashi, On lacunary trigonometric series II, Proc. Japan Acad., 44 (1968), 766–770. MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of MathematicsKobe UniversityKobeJapan

Personalised recommendations