Acta Mathematica Hungarica

, Volume 127, Issue 1–2, pp 178–194 | Cite as

On a nonlinear system consisting of three different types of differential equations

  • Á. BesenyeiEmail author


We consider a system consisting of a first order differential equation, a parabolic and an elliptic equation. Existence of weak solutions is proved by using the Schauder fixed point theorem. The paper improves some results of [3, 6] which is illustrated by example

Key words and phrases

flow in porous medium system of partial differential equations monotone operators Schauder fixed point theorem 

2000 Mathematics Subject Classification

35K60 35J60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. A. Adams, Sobolev Spaces, Academic Press (New York — San Francisco — London, 1975).zbMATHGoogle Scholar
  2. [2]
    Á. Besenyei, On systems of parabolic functional differential equations, Annales Univ. Sci. Budapest. Eötvös Sect. Math., 47 (2004), 143–160.MathSciNetGoogle Scholar
  3. [3]
    Á. Besenyei, Existence of weak solutions of a nonlinear system modelling fluid flow in porous media, Electron. J. Diff. Eqns., 2006 (2006), 1–19.Google Scholar
  4. [4]
    Á. Besenyei, Stabilization of solutions to a nonlinear system modelling fluid flow in porous media, Annales Univ. Sci. Budapest. Eötvös Sect. Math., 49 (2006), 115–136.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Á. Besenyei, On nonlinear parabolic variational inequalities containing nonlocal terms, Acta Math. Hungar., 116 (2007), 145–162.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Á. Besenyei, On a nonlinear system containing nonlocal terms related to a fluid flow model, E.J. Qualitative Theory of Diff. Equ., Proc. 8’th Coll. Qualitative Theory of Diff. Equ., 3 (2008), 1–13.Google Scholar
  7. [7]
    S. Cinca, Diffusion und Transport in porösen Medien bei veränderlichen Porosität, Diplomawork, University of Heidelberg (2000).Google Scholar
  8. [8]
    M. Chipot and L. Molinet, Asymptotic behaviour of some nonlocal diffusion problems, Appl. Anal., 80 (2001), 279–315.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars (Paris, 1969).zbMATHGoogle Scholar
  10. [10]
    J. D. Logan, M. R. Petersen and T. S. Shores, Numerical study of reaction-mineralogy-porosity changes in porous media, Appl. Math. Comput., 127 (2002), 149–164.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    L. Simon, On parabolic functional differential equations of general divergence form, in: Proceedings of the Conference FSDONA 04 (Milovy, 2004), 280–291.Google Scholar
  12. [12]
    L. Simon, Application of monotone type operators to parabolic and functional parabolic PDE’s, in: C. M. Dafermos, M. Pokorný (eds.), Handbook of Differential Equations: Evolutionary Equations, vol 4., North-Holland (Amsterdam, 2008), pp. 267–321.Google Scholar
  13. [13]
    E. Zeidler, Nonlinear Functional Analysis and its Applications I–II, Springer (1990).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Department of Applied AnalysisEötvös Loránd UniversityBudapestHungary

Personalised recommendations