Acta Mathematica Hungarica

, Volume 127, Issue 1–2, pp 154–177 | Cite as

Semi-Riemannian hypersurfaces in manifolds with metric mixed 3-structures

Article

Abstract

The mixed 3-structures are the counterpart of paraquaternionic structures in odd dimension. A compatible metric with a mixed 3-structure is necessarily semi-Riemann and mixed 3-Sasakian manifolds are Einstein. We investigate the differential geometry of the semi-Riemannian hypersurfaces of co-index both 0 and 1 in a manifold endowed with a mixed 3-structure and a compatible metric.

Key words and phrases

non-degenerate hypersurface mixed 3-structure Einstein manifold 

2000 Mathematics Subject Classification

53C15 53C50 53C40 53C12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. V. Alekseevsky, V. Cortes, A. S. Galaev and T. Leistner, Cones over pseudo-Riemannian manifolds and their holonomy, J. Reine Angew. Math. (2009), in press.Google Scholar
  2. [2]
    A. Bejancu, Hypersurfaces of manifolds with a Sasakian 3-structure, Demonstr. Math., 17 (1984), 197–209.MATHMathSciNetGoogle Scholar
  3. [3]
    A. Bejancu and H. R. Farran, Foliations and Geometric Structures, Mathematics and Its Applications (Springer, 2006).Google Scholar
  4. [4]
    D. E. Blair, Contact Manifolds in Riemannian Geometry, Lectures Notes in Math. 509 (Springer-Verlag, 1976).Google Scholar
  5. [5]
    C. Boyer and K. Galicki, 3-Sasakian manifolds, Suppl. J. Difier. Geom., 6 (1999), 123–184.MathSciNetGoogle Scholar
  6. [6]
    A. Caldarella and A. M. Pastore, Mixed 3-Sasakian structures and curvature, Ann. Pol. Math., 96 (2009), 107–125.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Ianuş, R. Mazzocco and G. E. Vîlcu, Real lightlike hypersurfaces of paraquater-nionic Kähler manifolds, Mediterr. J. Math., 3 (2006), 581–592.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Ianuş, M. Visinescu and G. E. Vîlcu, Conformal Killing-Yano tensors on manifolds with mixed 3-structures, SIGMA, Symmetry Integrability Geom. Methods Appl., 5 (2009), Paper 022, 12 pp.Google Scholar
  9. [9]
    S. Ianuş and G. E. Vîlcu, Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles, Int. J. Geom. Methods Mod. Phys., 5 (2008), 893–903.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    H. Kamada, Neutral hyper-Kähler structures on primary Kodaira surfaces, Tsukuba J. Math., 23 (1999), 321–332.MATHMathSciNetGoogle Scholar
  11. [11]
    Y. Kuo, On almost contact 3-structure, Tohoku Math. J., II. Ser., 22 (1970), 325–332.MATHCrossRefGoogle Scholar
  12. [12]
    P. Libermann, Sur les structures presque quaternioniennes de deuxième espéce, C.R. Acad. Sc. Paris, 234 (1952), 1030–1032.MATHMathSciNetGoogle Scholar
  13. [13]
    B. O’Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics 103, Academic Press (New York — London, 1983).MATHGoogle Scholar
  14. [14]
    S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J., II. Ser., 12 (1960), 459–476.MATHCrossRefGoogle Scholar
  15. [15]
    I. Sato, On a structure similar to the almost contact structure, Tensor, New Ser., 30 (1976), 219–224.MATHGoogle Scholar
  16. [16]
    Y. M. Song, J. S. Kim and M. M. Tripathi, On hypersurfaces of manifolds equipped with a hypercosymplectic 3-structure, Commun. Korean Math. Soc., 18 (2003), 297–230MATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Department of Mathematics and Computer SciencePetroleum-Gas University of PloieştiPloieştiRomania

Personalised recommendations