Acta Mathematica Hungarica

, Volume 124, Issue 3, pp 243–262 | Cite as

Finite quasihypermetric spaces

  • P. Nickolas
  • R. Wolf


Let (X, d) be a compact metric space and let \( \mathcal{M} \)(X) denote the space of all finite signed Borel measures on X. Define I: \( \mathcal{M} \)(X) → ℝ by I(μ) = ∫ X X d(x, y)dμ(x)dμ(y), and set M(X) = sup I(μ), where μ ranges over the collection of measures in \( \mathcal{M} \)(X) of total mass 1. The space (X, d) is quasihypermetric if I(μ) ≦ 0 for all measures μ in \( \mathcal{M} \)(X) of total mass 0 and is strictly quasihypermetric if in addition the equality I(μ) = 0 holds amongst measures μ of mass 0 only for the zero measure.

This paper explores the constant M(X) and other geometric aspects of X in the case when the space X is finite, focusing first on the significance of the maximal strictly quasihypermetric subspaces of a given finite quasihypermetric space and second on the class of finite metric spaces which are L 1-embeddable. While most of the results are for finite spaces, several apply also in the general compact case. The analysis builds upon earlier more general work of the authors [11] [13].

Key words and phrases

compact metric space finite metric space quasihypermetric space metric embedding signed measure signed measure of mass zero spaces of measures distance geometry geometric constant 

2000 Mathematics Subject Classification

primary 51K05 secondary 54E45, 31C45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ralph Alexander and Kenneth B. Stolarsky, Extremal problems of distance geometry related to energy integrals, Trans. Amer. Math. Soc., 193 (1974), 1–31.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Patrice Assouad, Un espace hypermétrique non plongeable dans un espace L 1, C.R. Acad. Sci. Paris Sér. A-B, 285 (1977), A361–A363.MathSciNetGoogle Scholar
  3. [3]
    Patrice Assouad, Sur les inégalités valides dans L 1, European J. Combin., 5 (1984), 99–112.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Göran Björck, Distributions of positive mass, which maximize a certain generalized energy integral, Ark. Mat., 3 (1956), 255–269.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    H. T. Croft, On 6-point configurations in 3-space, J. London Math. Soc., 36 (1961), 289–306.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, Math. Z., 79 (1962), 95–99.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Bálint Farkas and Szilárd Gy. Révész, Rendezvous numbers of metric spaces — a potential theoretic approach, Arch. Math. (Basel), 86 (2006), 268–281.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Aicke Hinrichs, Averaging distances in finite-dimensional normed spaces and John’s ellipsoid, Proc. Amer. Math. Soc., 130 (2002), 579–584 (electronic).zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Poul Hjorth, Petr Lisonek, Steen Markvorsen and Carsten Thomassen, Finite metric spaces of strictly negative type, Linear Algebra Appl., 270 (1998), 255–273.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    John B. Kelly, Hypermetric spaces, The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974), Springer (Berlin, 1975), pp. 17–31. Lecture Notes in Math., Vol. 490.Google Scholar
  11. [11]
    Peter Nickolas and Reinhard Wolf, Distance geometry in quasihypermetric spaces. I, Bull. Austral. Math. Soc., to appear.Google Scholar
  12. [12]
    Peter Nickolas and Reinhard Wolf, Distance geometry in quasihypermetric spaces. II, Math. Nachr., to appear.Google Scholar
  13. [13]
    Peter Nickolas and Reinhard Wolf, Distance geometry in quasihypermetric spaces. III, submitted.Google Scholar
  14. [14]
    I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math.Soc., 44 (1938), 522–536.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Reinhard Wolf, On the average distance property and certain energy integrals, Ark. Mat., 35 (1997), 387–400.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Dorothy Wolfe, Imbedding a finite metric set in an N-dimensional Minkowski space, Nederl. Akad. Wetensch. Proc. Ser. A 70 = Indag. Math., 29 (1967), 136–140.MathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia
  2. 2.Institut für MathematikUniversität SalzburgSalzburgAustria

Personalised recommendations