Acta Mathematica Hungarica

, Volume 121, Issue 3, pp 293–305

Asymptotic behavior of the irrational factor

Article

Abstract

We study the irrational factor function I(n) introduced by Atanassov and defined by \( I(n) = \prod\nolimits_{\nu = 1}^k {p_\nu ^{1/\alpha _\nu } } \), where \( n = \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } } \) is the prime factorization of n. We show that the sequence {G(n)/n}n≧1, where G(n) = Πν=1nI(ν)1/n, is convergent; this answers a question of Panaitopol. We also establish asymptotic formulas for averages of the function I(n).

Key words and phrases

Irrational factor arithmetic functions averages Dirichlet series Riemann zeta-function 

2000 Mathematics Subject Classification

primary 11M99 secondary 11A25 11A41 11N37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. T. Atanassov, Irrational factor: definition, properties and problems, Notes on Number Theory Discrete Math., 2 (1996), 42–44.MathSciNetGoogle Scholar
  2. [2]
    K. T. Atanassov, Restrictive factor: definition, properties and problems, Notes on Number Theory and Discrete Math., 8 (2002), 117–119.MathSciNetGoogle Scholar
  3. [3]
    H. Davenport, Multiplicative Number Theory, 3rd ed. (revised and with a preface by H. L. Montgomery), Graduate Texts in Mathematics, 74, Springer-Verlag (New York, 2000).MATHGoogle Scholar
  4. [4]
    G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., The Clarendon Press, Oxford University Press (New York, 1979).MATHGoogle Scholar
  5. [5]
    L. Panaitopol, Properties of the Atanassov functions, Adv. Stud. Contemp. Math. (Kyungshang), 8 (2004), 55–58.MATHMathSciNetGoogle Scholar
  6. [6]
    K. Ramachandra, Some remarks on the mean value of the Riemann zeta function and other Dirichlet series. I, Hardy-Ramanujan J., 1 (1978), 1–15.MATHMathSciNetGoogle Scholar
  7. [7]
    K. Ramachandra, Some remarks on the mean value of the Riemann zeta function and other Dirichlet series. II, Hardy-Ramanujan J., 3 (1980), 1–24.MathSciNetGoogle Scholar
  8. [8]
    K. Ramachandra, Some remarks on the mean value of the Riemann zeta function and other Dirichlet series. III, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 5 (1980), 145–158.MathSciNetGoogle Scholar
  9. [9]
    E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press (London, 1939).MATHGoogle Scholar
  10. [10]
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. (Edited and with a preface by D. R. Heath-Brown), The Clarendon Press, Oxford University Press (New York, 1986).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsKoç UniversitySariyer, IstanbulTurkey
  2. 2.Department of MathematicsUniversity of RochesterRochesterUSA
  3. 3.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations