Acta Mathematica Hungarica

, Volume 120, Issue 1–2, pp 147–163 | Cite as

Conditionally oscillatory half-linear differential equations



We consider a nonoscillatory half-linear second order differential equation
$$ (r(t)\Phi (x'))' + c(t)\Phi (x) = 0,\Phi (x) = \left| x \right|^{p - 2} x,p > 1, $$
and suppose that we know its solution h. Using this solution we construct a function d such that the equation
$$ (r(t)\Phi (x'))' + [c(t) + \lambda d(t)]\Phi (x) = 0 $$
is conditionally oscillatory. Then we study oscillations of the perturbed equation (**). The obtained (non)oscillation criteria extend existing results for perturbed half-linear Euler and Euler-Weber equations.

Key words and phrases

half-linear oscillation theory conditionally oscillatory equation oscillation and nonoscillation criteria Riccati type equation 

2000 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic (Dordrecht, 2002).Google Scholar
  2. [2]
    O. Došlý, Perturbations of the half-linear Euler-Weber type differential equation, J. Math. Anal. Appl., 323 (2006), 426–440.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    O. Došlý and Á. Elbert, Integral characterization of the principal solution to half-linear second-order differential equations, Stud. Sci. Math. Hung., 36 (2000), 455–469.MATHGoogle Scholar
  4. [4]
    O. Došlý and A. Lomtatidze, Oscillation and nonoscillation criteria for half-linear second order differential equations, Hiroshima Math. J., 36 (2006), 203–219.MATHMathSciNetGoogle Scholar
  5. [5]
    O. Došlý and M. Ünal, Half-linear differential equations: Linearization technique and its application, J. Math. Anal. Appl., 335 (2007), 450–460.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    O. Došlý and P. Řehák, Half-Linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier (Amsterdam, 2005).MATHGoogle Scholar
  7. [7]
    Á. Elbert and T. Kusano, Principal solutions of nonoscillatory half-linear differential equations, Adv. Math. Sci. Appl., 18 (1998), 745–759.MathSciNetGoogle Scholar
  8. [8]
    Á. Elbert and A. Schneider, Perturbations of the half-linear Euler differential equation, Result. Math., 37 (2000), 56–83.MATHMathSciNetGoogle Scholar
  9. [9]
    J. Jaroš, T. Kusano and T. Tanigawa, Nonoscillation theory for second order half-linear differential equations in the framework of regular variation, Result. Math., 43 (2003), 129–149.MATHGoogle Scholar
  10. [10]
    J. Jaroš, T. Kusano and T. Tanigawa, Nonoscillatory half-linear differential equations and generalized Karamata functions, Nonlinear Anal., 64 (2006), 762–787.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. D. Mirzov, Principal and nonprincipal solutions of a nonoscillatory system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 31 (1988), 100–117.MATHMathSciNetGoogle Scholar
  12. [12]
    Z. Pátíková, Asymptotic formulas for nonoscillatory solutions of perturbed half-linear Euler equation, submitted.Google Scholar
  13. [13]
    J. Sugie and N. Yamaoka, Comparison theorems for oscillation of second-order half-linear differential equations, Acta Math. Hungar., 111 (2006), 165–179.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMasaryk UniversityBrnoCzech Republic
  2. 2.Faculty of EngineeringBahcesehir UniversityBesiktas, IstanbulTurkey

Personalised recommendations