Acta Mathematica Hungarica

, Volume 116, Issue 1–2, pp 1–25 | Cite as

Two-weight estimates for singular and strongly singular integral operators

  • V. Kokilashvili
  • N. Lyall
  • A. Meskhi


We consider conditional two-weight estimates for singular and strongly singular integral operators. The conditions governing two-weight estimates shall be simultaneously necessary and sufficient for quite a large class of singular integrals.

Key words and phrases

singular integrals two-weight estimates 

2000 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Andersen and B. Muckenhoupt, Weighted weak type inequalities with applications to Hilbert transforms and maximal functions, Studia Math., 72 (1982), 9–26.zbMATHMathSciNetGoogle Scholar
  2. [2]
    J. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull., 21 (1978), 405–408.zbMATHMathSciNetGoogle Scholar
  3. [3]
    S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Math. Soc., 281 (1984), 77–107.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Chanillo and M. Christ, Weak (1, 1) bounds for oscillatory singular integrals, Duke Math. J., 55 (1987), 141–155.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Chanillo, D. Kurtz, and G. Sampson, Weighted weak (1, 1) and weighted L p estimates for oscillatory kernels, Trans. Amer. Math. Soc., 295 (1986), 127–145.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    S. Chanillo and A. Torchinsky, Sharp function and weighted L p estimates for a class of pseudodifferential operators, Ark. Mat., 24 (1986), 1–25.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241–249.zbMATHMathSciNetGoogle Scholar
  8. [8]
    D. Edmunds and V. Kokilashvili, Two-weight inequalities for singular integrals, Canadian Math. Bull., 38 (1995), 119–125.MathSciNetGoogle Scholar
  9. [9]
    D. Edmunds, V. Kokilashvili, and A. Meskhi, Two-weight estimates for singular integrals defined on spaces of homogeneous type, Canadian J. Math., 52 (2000), 468–502.zbMATHMathSciNetGoogle Scholar
  10. [10]
    D. Edmunds, Bounded and Compact Integral Operators, Kluwer (Dordrecht, Boston, London, 2002).zbMATHGoogle Scholar
  11. [11]
    C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math., 124 (1970), 9–36.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    C. Fefferman, L p bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413–417.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. Garcia-Cuerza and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland (Amsterdam, New York, Oxford, 1985).Google Scholar
  14. [14]
    I. Genebashvili, A. Gegatishvili, V. Kokilashvili and M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman (Harlow, 1992).Google Scholar
  15. [15]
    V. Guliev, Two-weight L p inequality for singular integral operators on Heisenberg groups, Georgian Math. J., 1 (1994), 367–376.zbMATHCrossRefGoogle Scholar
  16. [16]
    E. Gusseinov, Singular integrals in the space of functions summable with monotone weight (Russian), Mat. Sb., 132(174) (1977), 28–44.Google Scholar
  17. [17]
    I. I. Hirschman, Multiplier transforms I, Duke Math. J., 26 (1956), 222–242.MathSciNetGoogle Scholar
  18. [18]
    S. Hoffman, Singular integrals with power weights, Proc. Amer. Math. Soc., 110 (1990), 343–353.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Y. Hu, A Weighted Norm Inequality for Oscillatory Singular Integrals, Harmonic Analysis (Tianjin, 1988), Lecture Notes in Math., Springer Verlag (Berlin, 1994).Google Scholar
  20. [20]
    Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat., 30 (1992), 311–320.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the congugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227–251.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    V. Kokilashvili, On Hardy’s inequalities in weighted spaces, Soobsch. Akad. Nauk Gruz. SSR, 96 (1979), 37–40 (in Russian).zbMATHMathSciNetGoogle Scholar
  23. [23]
    V. Kokilashvili and A. Meskhi, Two-weight inequalities for singular integrals de-ned on homogeneous groups, Proc. A. Razmzdze Math. Inst., 112 (1997), 57–90.MathSciNetGoogle Scholar
  24. [24]
    V. Kokilashvili and A. Meskhi, Two-weight inequalities for singular integrals defined on homogeneous groups, in: Function Spaces V, Proceedings of the Conference, Poznań, Poland, M. Mudzik and L. Skrzypczak, eds., Lecture Notes in Pure and Applied Mathematics, 213, Marcel Dekker (2000).Google Scholar
  25. [25]
    N. Lyall, A class of strongly singular Radon transforms on the Heisenberg group, to appear in Proc. of Edin. Math. Soc. Google Scholar
  26. [26]
    V. Maz’ya, Sobolev Spaces, Springer (Berlin, 1985).Google Scholar
  27. [27]
    B. Muckenhoupt, Hardy’s inequality with weights, Studia Math., 44 (1972), 31–38.zbMATHMathSciNetGoogle Scholar
  28. [28]
    B. Muckenhoupt and R. Wheeden, Two-weight function norm inequalities for the Hardy-Littlewood maximal function and Hilbert transform, Studia Math., 55 (1976), 279–294.zbMATHMathSciNetGoogle Scholar
  29. [29]
    Y. Pan, Oscillatory singular integrals on L p and Hardy spaces, Proc. Amer. Math. Soc., 124 (1996), 2821–2825.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals, J. Funct. Anal., 73 (1987), 179–194.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    S. Sato, Weighted weak type (1, 1) estimates for oscillatory singular integrals, Studia Math., 141 (2000), 1–24.zbMATHMathSciNetGoogle Scholar
  32. [32]
    F. Soria and G. Weiss, A remark on singular integrals and power weights, Indiana Univ. Math. J., 93 (1994), 187–204.CrossRefMathSciNetGoogle Scholar
  33. [33]
    E. M. Stein, A note on singular integrals, Proc. Amer. Math. Soc., 8 (1957), 250–254.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (Princeton, 1993).zbMATHGoogle Scholar
  35. [35]
    J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer Verlag (Berlin, 1989).zbMATHGoogle Scholar
  36. [36]
    S. Wainger, Special Trigonometric Series in k Dimensions, Memoirs of the AMS 59, American Math. Soc. (1965).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • V. Kokilashvili
    • 1
  • N. Lyall
    • 2
  • A. Meskhi
    • 1
  1. 1.A. Razmadze Mathematical InstituteGeorgian Academy of SciencesTbilisiGeorgia
  2. 2.Scuola Normale SuperiorePisaItaly

Personalised recommendations