Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 2, pp 597–606 | Cite as

Large Time Behavior of Solution to Nonlinear Dirac Equation in 1+1 Dimensions

  • Yongqian Zhang
  • Qin ZhaoEmail author
Article
  • 2 Downloads

Abstract

This paper studies the large time behavior of solution for a class of nonlinear massless Dirac equations in R1+1. It is shown that the solution will tend to travelling wave solution when time tends to infinity.

Key words

large time behavior nonlinear Dirac equation gross-Neveu model global strong solution gravelling wave solution 

2010 MR Subject Classification

35Q41 35Q40 35L60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beale J. Large-time behavior of the Broadwell model of a discrete velocity gas. Comm Math Phys, 1985, 102(2): 217–235MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bournaveas N, Zouraris G E. Theory and numerical approximations for a nonlinear 1 + 1 Dirac system. ESAIM Math Model Num Analysis, 2012, 46(4): 841–874MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Cacciafesta F. Global small solutions to the critical radial Dirac equation with potential. Nonlinear Analysis, 2011, 74: 6060–6073MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Candy T. Global existence for an L 2 critical nonlinear Dirac equation in one dimension. Adv Differential Equations, 2011, 16(7/8): 643–666MathSciNetzbMATHGoogle Scholar
  5. [5]
    Chen S X. Cauchy problem for semilinear hyperbolic equation of higher order with discontinuous initial data. Acta Math Sci, 1994, 14B(2): 121–129MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Contreras A, Pelinovsky D, Shimabukuro Y. L 2 orbital stability of Dirac solitons in the massive Thirring model. Comm Partial Differential Equations, 2016, 41(2): 227–255MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Delgado V. Global solution of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations. Proc Amer Math Soc, 1978, 69(2): 289–296MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Escobedo M, Vega L. A semilinear Dirac equation in H s(R 3) for s > 1. SIAM J Math Anal, 1997, 28(2): 338–362MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Gross D J, Neveu A. Dynamical symmetry breaking in asymptotically free field theories. Phys Rev D, 1974, 10: 3235–3253CrossRefGoogle Scholar
  10. [10]
    Huh H. Global strong solution to the Thirring model in critical space. J Math Anal Appl, 2011, 381: 513–520MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Huh H. Global solutions to Gross-Neveu equation. Lett Math Phys, 2013, 103 (8): 927–931MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Huh H, Moon B. Low regularity well-posedness for Gross-Neveu equations. Commun Pure Appl Anal, 2015, 14 (5): 1903–1913MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Lax P. Functional Analysis. John Wiely Sons Inc, 2002zbMATHGoogle Scholar
  14. [14]
    Pelinovsky D. Survey on global existence in the nonlinear Dirac equations in one dimension//Ozawa T, Sugimoto M. Harmonic Analysis and Nonlinear Partial Differential Equations. RIMS Kôkyûroku Bessatsu, 2011: 37–50Google Scholar
  15. [15]
    Sasaki H. Small data scattering for the one-dimensional nonlinear Dirac equation with power nonlinearity. Comm Partial Differential Equations, 2015, 40(11): 1959–2004MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Schecter M. Morden Methods of Partial Differential Equations. McGraw-Hill international Book Co, 1977Google Scholar
  17. [17]
    Selberg S, Tesfahun A. Low regularity well-posedness for some nonlinear Dirac equations in one space dimension. Differential Integral Equations, 2010, 23(3/4): 265–278MathSciNetzbMATHGoogle Scholar
  18. [18]
    Thirring W E. A soluble relativistic field theory. Ann Phys, 1958, 3: 91–112MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Zhang Y Q. Global strong solution to a nonlinear Dirac type equation in one dimension. Nonlinear Analysis, 2013, 80: 150–155MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Zhang Y Q, Zhao Q. Global solution to nonlinear Dirac equations for Gross-Neveu model in 1+1 dimensions. Nonlinear Analysis, 2015, 118: 82–96MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiChina
  2. 2.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations