Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 2, pp 491–497 | Cite as

Liouville Type Theorem for the Stationary Equations of Magneto-Hydrodynamics

  • Simon SchulzEmail author
Article
  • 1 Downloads

Abstract

We show that any smooth solution (u, H) to the stationary equations of magneto-hydrodynamics belonging to both spaces L6(ℝ3) and BMO−1(ℝ3) must be identically zero. This is an extension of previous results, all of which systematically required stronger integra-bility and the additional assumption ∇u,∇HL2(ℝ3), i.e., finite Dirichlet integral.

Key words

Liouville theorem Caccioppoli inequality Navier-Stokes equations MHD 

2010 MR Subject Classification

35B53 35Q30 76W05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author wishes to thank Gui-Qiang Chen and Gregory Seregin for useful discussions.

References

  1. [1]
    Bogovskiĭ M E. Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl Akad Nauk SSSR, 1979, 248(5): 1037–1040MathSciNetGoogle Scholar
  2. [2]
    Chae D. Liouville type theorems for the Euler and Navier-Stokes equations. Adv Math, 2011, 228: 2855–2868MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Chae D, Weng S. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohy-drodynamic equations. Discrete Contin Dyn Syst, 2016, 36(10): 5267–5285MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001zbMATHGoogle Scholar
  5. [5]
    Koch G, Nadirashvili N, Seregin G A, Šverák V. Liouville theorems for the Navier-Stokes equations and applications. Acta Math, 2009, 203: 83–105MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Seregin G A. Lecture Notes on Regularity Theory for the Navier-Stokes Equations. Hackensack, NJ: World Scientific Publishing Co Pte Ltd, 2015zbMATHGoogle Scholar
  7. [7]
    Seregin G A. Liouville type theorem for stationary Navier-Stokes equations. Nonlinearity, 2016, 29: 2191–2195MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton University Press, 1970zbMATHGoogle Scholar
  9. [9]
    Zhang Z, Yang X, Qiu S. Remarks on Liouville type result for the 3D Hall-MHD system. J Part Diff Equ, 2015, 28(3): 286–290MathSciNetzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations