Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 2, pp 449–460 | Cite as

Low Mach Number Limit of a Compressible Non-Isothermal Nematic Liquid Crystals Model

  • Jishan Fan
  • Fucai LiEmail author
Article
  • 1 Downloads

Abstract

In this paper, we study the low Mach number limit of a compressible non-isothermal model for nematic liquid crystals in a bounded domain. We establish the uniform estimates with respect to the Mach number, and thus prove the convergence to the solution of the incompressible model for nematic liquid crystals.

Key words

compressible non-isothermal liquid crystals bounded domain low Mach number limit 

2010 MR Subject Classification

76N10 35Q30 35Q35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alazard T. Low Mach number limit of the full Navier-Stokes equations. Arch Ration Mech Anal, 2006, 180: 1–73MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bendali A, Dominguez J M, Gallic S. A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains. J Math Anal Appl, 1985, 107: 537–560MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Bourguignon J, Brezis H. Remarks on the Euler equation. J Funct Anal, 1974, 15: 341–363MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Chu Y, Liu X, Liu X. Strong solutions to the compressible liquid crystal system. Pacific J Math, 2012, 257: 37–52MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Cui W, Ou Y, Ren D. Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains. J Math Anal Appl, 2015, 427: 263–288MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Ding S, Huang J, Wen H, Zi R. Incompressible limit of the compressible nematic liquid crystal flow. J Funct Anal, 2013, 264: 1711–1756MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Dou C, Jiang S, Ou Y. Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J Differential Equations, 2015, 258: 379–398MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Fan J, Li F, Nakamura G. Local well-posedness for a compressible non-isothermal model for nematic liquid crystals. J Math Phys, 2018, 59: 031503MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Feireisl E, Fremond M, Rocca E, Schimperna G. A new approach to non-isothermal models for nematic liquid crystals. Arch Ration Mech Anal, 2012, 205: 651–672MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Feireisl E, Rocca E, Shimperna G, On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24: 243–257MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Gu W, Fan J, Zhou Y. Regularity criteria for some simplified non-isothermal models for nematic liquid crystals. Comput Math Appl, 2016, 72: 2839–2853MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Guo B, Xi X, Xie B. Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals. J Differential Equations, 2017, 262: 1413–1460MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Guo B, Xie B, Xi X. On a compressible non-isothermal model for nematic liquid crystals. arXiv:1603.03976Google Scholar
  14. [14]
    Huang T, Wang C, Wen H. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252: 2222–2265MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Huang T, Wang C, Wen H. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285–311MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Jiang F, Jiang S, Wang D. On multi-dimensional compressible flow of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265: 3369–3397MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Jiang F, Jiang S, Wang D. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Ration Mech Anal, 2014, 214: 403-451MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Klainerman S, Majda A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34: 481–524MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Li J, Xin Z. Global existence of weak solutions to the non-isothermal nematic liquid crystuls in 2D. Acta Math Sci, 2016, 36B(3): 973–1014MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Li X, Guo B. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete Contin Dyn Syst Ser S, 2016, 9: 1913–1937MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Lin F, Wang C. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 2014, 372: 20130361, 18ppMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Lions P L. Mathematical Topics in Fluid Mechanics Vol 2: Compressible Models. New York: Oxford University Press, 1998zbMATHGoogle Scholar
  23. [23]
    Metivier G, Schochet S. The incompressible limit of the non-isentropic Euler equations. Arch Ration Mech Anal, 2001, 158: 61–90MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Qi G, Xu J. The low Mach number limit for the compressible flow of liquid crystals. Appl Math Comput, 2017, 297: 39–49MathSciNetGoogle Scholar
  25. [25]
    Schochet S. The mathematical theory of the incompressible limit in fluid dynamics//Handbook of Mathematical Fluid Dynamics, Vol IV. Amsterdam: Elsevier/North-Holland, 2007: 123–157Google Scholar
  26. [26]
    Xiao Y, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60: 1027–1055MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Yang X. Uniform well-posedness and low Mach number limit to the compressible nematic liquid flows in a bounded domain. Nonlinear Anal, 2015, 120: 118–126MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsNanjing Forestry UniversityNanjingChina
  2. 2.Department of MathematicsNanjing UniversityNanjingChina

Personalised recommendations