Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 2, pp 369–381 | Cite as

Approximate Solution of a p-th Root Functional Equation in Non-Archimedean (2,β)-Banach Spaces

  • Iz-iddine El-FassiEmail author
  • Hamid Khodaei
  • Themistocles M. Rassias
Article
  • 3 Downloads

Abstract

In this paper, using the Brzdęk’s fixed point theorem [9, Theorem 1] in non-Archimedean (2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation
$$f\left( {\left( {\sum\limits_{i = 1}^k {a_i x_i^p } } \right)^{1/p} } \right) = \sum\limits_{i = 1}^k {a_i f\left( {x_i } \right)} ,$$
where p ∈ {1, ⋯, 5}, a1, ⋯, ak are fixed nonzero reals when p ∊ {1, 3, 5} and are fixed positive reals when p ∈ {2, 4}.

Key words

fixed point theorem p-th root functional equation stability non-Archimedean (2,β)-normed spaces 

2010 MR Subject Classification

39B82 47H10 65Q20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agarwal R P, Xu B, Zhang W. Stability of functional equations in single variable. J Math Anal Appl, 2003, 288: 852–869MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Aiemsomboon L, Sintunavarat W. On a new type of stability of a radical quadratic functional equation using Brzdęk’s fixed point theorem. Acta Math Hungar, 2017, 151 (1): 35–46MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Alizadeh Z, Ghazanfari A G. On the stability of a radical cubic functional equation in quasi-β-spaces. J Fixed Point Theory Appl, 2016, 18: 843–853MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Japan, 1950, 2: 64–66MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Bourgin D G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math J, 1949, 16: 385–397MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Bourgin D G. Classes of transformations and bordering transformations. Bull Amer Math Soc, 1951, 57: 223–237MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Brzdęk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141(1/2): 58–67MathSciNetCrossRefGoogle Scholar
  8. [8]
    Brzdęk J. Remarks on solutions to the functional equations of the radical type. Adv Theory Nonlinear Anal Appl, 2017, 1(2): 125–135Google Scholar
  9. [9]
    Brzdęk J, Ciepliński K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal, 2011, 74: 6861–6867MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Brzdęk J, Ciepliński K. Hyperstability and superstability. Abstr Appl Anal, 2003, 2013: Article ID 401756Google Scholar
  11. [11]
    Brzdęk J, Ciepliński K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math Sci, 2018, 38B(2): 377–390MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Brzdęk J, Fechner W, Moslehian M S, Sikorska J. Recent developments of the conditional stability of the homomorphism equation. Banach J Math Anal, 2015, 9: 278–327MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Dung N V, Hang V T L. The generalized hyperstability of general linear equations in quasi-Banach spaces. J Math Anal Appl, 2018, 462: 131–147MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    El-Fassi Iz. On a new type of hyperstability for radical cubic functional equation in non-Archimedean metric spaces. Results Math, 2017, 72: 991–1005MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    El-Fassi Iz. Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces. J Math Anal Appl, 2017, 455: 2001–2013MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    El-Fassi Iz. A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β)-Banach spaces. J Math Anal Appl, 2018, 457: 322–335MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    El-Fassi Iz. On the general solution and hyperstability of the general radical quintic functional equation in quasi-β-Banach spaces. J Math Anal Appl, 2018, 466: 733–748MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    El-Fassi Iz. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. RACSAM, 2018, https://doi.org/10.1007/s13398-018-0506-z CrossRefzbMATHGoogle Scholar
  19. [19]
    El-Fassi Iz, Brzdęk J, Chahbi A, Kabbaj S. On hyperstability of the biadditive functional equation. Acta Math Sci, 2017, 37B(6): 1727–1739MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    El-Fassi Iz, Kabbaj S. On the generalized orthogonal stability of the Pexiderized quadratic functional equation in modular space. Math Slovaca, 2017, 67(1): 165–178MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Gähler S. Lineare 2-normierte Räume. Math Nachr, 1964, 28: 1–43 (in German)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Gähler S. Über 2-Banach-Räume. Math Nachr, 1969, 42: 335–347 (in German)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Gajda Z. On stability of additive mappings. Int J Math Math Sci, 1991, 14: 431–434MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Gǎvruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl, 1994, 184: 431–436MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Gordji M E, Khodaei H, Rassias Th M. A Functional Equation Having Monomials and Its Stability. Optimization and Its Applications, 96. Springer, 2014Google Scholar
  26. [26]
    Hensel K. Über eine neue Begründung der Theorie der algebraischen Zahlen. Jahresber Dtsch Math-Ver, 1897, 6: 83–88zbMATHGoogle Scholar
  27. [27]
    Hyers D H. On the stability of the linear functional equation. Proc Nat Acad Sci, USA, 1941, 27: 222–224MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Katsaras A K, Beoyiannis A. Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math J, 1999, 6: 33–44MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Khodaei H, Eshaghi Gordji M, Kim S S, Cho Y J. Approximation of radical functional equations related to quadratic and quartic mappings. J Math Anal Appl, 2012, 395: 284–297MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Khrennikov A. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Mathematics and Its Applications, 427. Dordrecht: Kluwer Academic, 1997Google Scholar
  31. [31]
    Maksa G, Páles Z. Hyperstability of a class of linear functional equations. Acta Math Acad Paedagog Nyháazi (NS), 2001, 17: 107–112MathSciNetzbMATHGoogle Scholar
  32. [32]
    Moslehian M S, Rassias Th M. Stability of functional equations in non-Archimedean spaces. Appl Anal Discrete Math, 2007, 1: 325–334MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Nyikos P J. On some non-Archimedean spaces of Alexandrof and Urysohn. Topol Appl, 1999, 91: 1–23MathSciNetCrossRefGoogle Scholar
  34. [34]
    Rassias Th M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72: 297–300MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    Rassias Th M. On a modified Hyers-Ulam sequence. J Math Anal Appl, 1991, 158: 106–113MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    Rassias Th M, Semrl P. On the behavior of mappings which do not satisfy Hyers-Ulam stability. Proc Amer Math Soc, 1992, 114: 989–993MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Ulam S M. A Collection of Mathematical Problems. New York: Interscience Publishers, 1960; Reprinted as: Problems in Modern Mathematics. New York: John Wiley & Sons, Inc, 1964zbMATHGoogle Scholar
  38. [38]
    White A. 2-Banach spaces. Math Nachr, 1969, 42: 43–60MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Xu B, Brzdęk J, Zhang W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pacific J Math, 2015, 273(2): 483–498MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  • Iz-iddine El-Fassi
    • 1
    Email author
  • Hamid Khodaei
    • 2
  • Themistocles M. Rassias
    • 3
  1. 1.Department of Mathematics, Faculty of SciencesIbn Tofaïl UniversityKenitraMorocco
  2. 2.Department of MathematicsMalayer UniversityMalayerIran
  3. 3.Department of MathematicsNational Technical University of Athens, Zografou CampusAthensGreece

Personalised recommendations