A computer agent that develops visual compositions based on the ER-model

  • Rafael Pérez y PérezEmail author
  • Iván Guerrero Román


This paper describes a computer agent for the automatic generation of visual compositions based on the Engagement-Reflection Model of creative writing (Pérez y Pérez Cogn. Syst. Res. 8, 89–109, 2007; Pérez y Pérez and Sharples J. Exp. Theor. Artif. Intell. 13, 119–139, 2001). During engagement the system progresses the composition; during reflection the agent evaluates, and if necessary modifies, the material produced so far and generates a set of guidelines that constrains the production of material during engagement. The final output is the result of a constant interplay between these two states. We offer details of the model and describe a prototype that provides the users with the possibility of adding compositions to the knowledge-base. Then, we show how through engagement and reflection cycles, the system is capable of generating novel outputs. Using a questionnaire, we asked a group of volunteers to describe the features of pieces produced by the program and the features of pieces produced by human designers. The results suggest that our agent provides an adequate novel framework to study the generation of automatic visual compositions.


Computational creativity Engagement and reflection Intelligent systems Visual composition Autonomous design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank María González de Cossío for her useful feedback on this computer model and her help in the evaluation of the compositions generated by our system. This work was supported by the Consejo Nacional en Ciencia y Tecnología (CONACyT) in México under Grant 181561.


  1. 1.
    Agostini, F.: Juegos con la imagen. Editorial Pirámide, Madrid (1987)Google Scholar
  2. 2.
    Birkhoff, G.: Aesthetic Measure. Harvard University Press, Cambridge (1933)CrossRefGoogle Scholar
  3. 3.
    Burton, E.: Thoughtful drawings: a computational model of the cognitive nature of children’s drawing. Comput. Graphics Forum 14, 159–170 (1995). CrossRefGoogle Scholar
  4. 4.
    Burton, E.: Representing representation: artificial intelligence and drawing. In: Mealing, S. (ed.) Computers & Art. Intellect Books, 2nd edn, pp 33–50. Intellect, Bristol (2002)Google Scholar
  5. 5.
    Cohen, H.: Parallel to perception: some notes on the problem of machine-generated art. Comput. Stud. 4, 125 (1973)Google Scholar
  6. 6.
    Cohen, H.: The further exploits of AARON, Painter. Stanford Electronic Humanities Review. Construct. Mind 4, 2 (1995). Google Scholar
  7. 7.
    Colton, S.: The painting fool: stories from building an automated painter. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp 3–38. Springer, Berlin (2011)Google Scholar
  8. 8.
    Davis, N., Popova, Y., Sysoev, I., Hsio, C., Zhang, D., Magerko, B.: Building artistic computer colleagues with an enactive model of creativity. In: Proceedings of the Fifth International Conference on Computational Creativity, Ljubljana, Slovenia, pp. 38–45 (2014)Google Scholar
  9. 9.
    Field, M., Golubitsky, M.: Symmetry in Chaos: a Search for Pattern in Mathematics, Art and Nature. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  10. 10.
    Funaro, D.: Polynomial Approximation of Differential Equations. Springer, Berlin (1992)zbMATHGoogle Scholar
  11. 11.
    Hall, T.: La dimensión oculta. Siglo XXI, Ciudad de México (1999)Google Scholar
  12. 12.
    Kinsey, L., Moore, T.: Symmetry, Shape and Space. An Introduction to Mathematics through Geometry. Key College Publishing/Springer, Berlin (2002)zbMATHGoogle Scholar
  13. 13.
    Koning, H., Eizenberg, J.: The language of the prairie: Frank Lloyd Wright’s prairie houses. Environ. Plann. B. Plann. Des. 8, 295–323 (1981)CrossRefGoogle Scholar
  14. 14.
    Kurzweil, R.: The Age of Intelligent Machines. MIT Press, Cambridge (1990)Google Scholar
  15. 15.
    Lauer, D. A., Pentak, S.: Design Basics. Wadsworth, Boston (2012)Google Scholar
  16. 16.
    Lidwell, W., Holden, K., Butler, J.: Universal Principles of Design. Rockport Publishers, Beverly (2003)Google Scholar
  17. 17.
    Myers, J.: The Language Of Visual Art. Perception as a Basis for design. Holt, Reinehart and Winston, Inc, Austin (1989)Google Scholar
  18. 18.
    Pérez y Pérez, R.: Employing emotions to drive plot generation in a computer-based storyteller. Cogn. Syst. Res. 8, 89–109 (2007). CrossRefGoogle Scholar
  19. 19.
    Pérez y Pérez, R.: The three layers evaluation model for computer-generated plots. In: Proceedings of the Fifth International Conference on Computational Creativity, Ljubljana, Slovenia, pp 220–229 (2014)Google Scholar
  20. 20.
    Pérez y Pérez, R.: A computer-based model for collaborative narrative generation. Cogn. Syst. Res. 36-37, 30–48 (2015). CrossRefGoogle Scholar
  21. 21.
    Pérez y Pérez, R., The computational creativity continuum. In: Proceedings of the Ninth International Conference on Computational Creativity, Salamanca, Spain, pp 177–184 (2018)Google Scholar
  22. 22.
    Pérez y Pérez, R., Sharples, M.: MEXICA: a computer model of a cognitive account of creative writing. J. Exp. Theor. Artif. Intell. 13, 119–139 (2001). CrossRefzbMATHGoogle Scholar
  23. 23.
    Pérez y Pérez, R., Aguilar, A., Negrete, S.: The ERI-designer: a computer model for the arrangement of furniture. Mind. Mach. 20, 533–564 (2010). CrossRefGoogle Scholar
  24. 24.
    Pérez y Pérez, R., Gonzalez de Cossio, M., Guerrero, I.: A computer model for the generation of visual compositions. In: Proceedings of the fourth International Conference on Computational Creativity, Sidney, Australia, pp 105–112 (2013)Google Scholar
  25. 25.
    Sharples, M.: How We Write? Writing as Creative Design. Routledge, London (1999)Google Scholar
  26. 26.
    Stiny, G.: Shape grammars and the generative specification of painting and sculpture. In: Petrocelli, O. R. (ed.) The Best Computer Papers of 1971, pp 125–135. Auerbach Publications, Philadelphia (1972)Google Scholar
  27. 27.
    Talton, J., Lou, Y., Lesser, S., Duke, J.: Metropolis procedural modeling. ACM Trans. Graph. 30, 2, Article 11 (2011)CrossRefGoogle Scholar
  28. 28.
    Vere, S.: Inductive learning of relational productions. In: Waterman, D. A., Hayes-Roth, F. (eds.) Patter-Directed Inference Systems, pp 281–295. Academic Press Inc (1978)Google Scholar
  29. 29.
    Wertheimer, M., Spillmann, L., Wertheimer, M., Sarris, V., Sekuler, R.: On Perceived Motion and Figural Organization. MIT Press, Cambridge (2012)Google Scholar
  30. 30.
    Yu, T., Bentley. P.: Methods to evolve legal phenotypes. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H P (eds.) Parallel Problem Solving from Nature — PPSN V. Lecture Notes in Computer Science, 1498, pp 280–291. Springer, Berlin (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.División de Ciencias de la Comunicación y DiseñoUniversidad Autónoma Metropolitana, CuajimalpaCiudad de MéxicoMexico
  2. 2.Posgrado en Ciencia e Ingeniería de la ComputaciónUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations