Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A computer agent that develops visual compositions based on the ER-model

Abstract

This paper describes a computer agent for the automatic generation of visual compositions based on the Engagement-Reflection Model of creative writing (Pérez y Pérez Cogn. Syst. Res. 8, 89–109, 2007; Pérez y Pérez and Sharples J. Exp. Theor. Artif. Intell. 13, 119–139, 2001). During engagement the system progresses the composition; during reflection the agent evaluates, and if necessary modifies, the material produced so far and generates a set of guidelines that constrains the production of material during engagement. The final output is the result of a constant interplay between these two states. We offer details of the model and describe a prototype that provides the users with the possibility of adding compositions to the knowledge-base. Then, we show how through engagement and reflection cycles, the system is capable of generating novel outputs. Using a questionnaire, we asked a group of volunteers to describe the features of pieces produced by the program and the features of pieces produced by human designers. The results suggest that our agent provides an adequate novel framework to study the generation of automatic visual compositions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Agostini, F.: Juegos con la imagen. Editorial Pirámide, Madrid (1987)

  2. 2.

    Birkhoff, G.: Aesthetic Measure. Harvard University Press, Cambridge (1933)

  3. 3.

    Burton, E.: Thoughtful drawings: a computational model of the cognitive nature of children’s drawing. Comput. Graphics Forum 14, 159–170 (1995). https://doi.org/10.1111/j.1467-8659.1995.cgf143_0159.x

  4. 4.

    Burton, E.: Representing representation: artificial intelligence and drawing. In: Mealing, S. (ed.) Computers & Art. Intellect Books, 2nd edn, pp 33–50. Intellect, Bristol (2002)

  5. 5.

    Cohen, H.: Parallel to perception: some notes on the problem of machine-generated art. Comput. Stud. 4, 125 (1973)

  6. 6.

    Cohen, H.: The further exploits of AARON, Painter. Stanford Electronic Humanities Review. Construct. Mind 4, 2 (1995). https://web.stanford.edu/group/SHR/4-2/text/cohen.html

  7. 7.

    Colton, S.: The painting fool: stories from building an automated painter. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp 3–38. Springer, Berlin (2011)

  8. 8.

    Davis, N., Popova, Y., Sysoev, I., Hsio, C., Zhang, D., Magerko, B.: Building artistic computer colleagues with an enactive model of creativity. In: Proceedings of the Fifth International Conference on Computational Creativity, Ljubljana, Slovenia, pp. 38–45 (2014)

  9. 9.

    Field, M., Golubitsky, M.: Symmetry in Chaos: a Search for Pattern in Mathematics, Art and Nature. Oxford University Press, Oxford (1995)

  10. 10.

    Funaro, D.: Polynomial Approximation of Differential Equations. Springer, Berlin (1992)

  11. 11.

    Hall, T.: La dimensión oculta. Siglo XXI, Ciudad de México (1999)

  12. 12.

    Kinsey, L., Moore, T.: Symmetry, Shape and Space. An Introduction to Mathematics through Geometry. Key College Publishing/Springer, Berlin (2002)

  13. 13.

    Koning, H., Eizenberg, J.: The language of the prairie: Frank Lloyd Wright’s prairie houses. Environ. Plann. B. Plann. Des. 8, 295–323 (1981)

  14. 14.

    Kurzweil, R.: The Age of Intelligent Machines. MIT Press, Cambridge (1990)

  15. 15.

    Lauer, D. A., Pentak, S.: Design Basics. Wadsworth, Boston (2012)

  16. 16.

    Lidwell, W., Holden, K., Butler, J.: Universal Principles of Design. Rockport Publishers, Beverly (2003)

  17. 17.

    Myers, J.: The Language Of Visual Art. Perception as a Basis for design. Holt, Reinehart and Winston, Inc, Austin (1989)

  18. 18.

    Pérez y Pérez, R.: Employing emotions to drive plot generation in a computer-based storyteller. Cogn. Syst. Res. 8, 89–109 (2007). https://doi.org/10.1016/j.cogsys.2006.10.001

  19. 19.

    Pérez y Pérez, R.: The three layers evaluation model for computer-generated plots. In: Proceedings of the Fifth International Conference on Computational Creativity, Ljubljana, Slovenia, pp 220–229 (2014)

  20. 20.

    Pérez y Pérez, R.: A computer-based model for collaborative narrative generation. Cogn. Syst. Res. 36-37, 30–48 (2015). https://doi.org/10.1016/j.cogsys.2015.06.002

  21. 21.

    Pérez y Pérez, R., The computational creativity continuum. In: Proceedings of the Ninth International Conference on Computational Creativity, Salamanca, Spain, pp 177–184 (2018)

  22. 22.

    Pérez y Pérez, R., Sharples, M.: MEXICA: a computer model of a cognitive account of creative writing. J. Exp. Theor. Artif. Intell. 13, 119–139 (2001). https://doi.org/10.1080/09528130118867

  23. 23.

    Pérez y Pérez, R., Aguilar, A., Negrete, S.: The ERI-designer: a computer model for the arrangement of furniture. Mind. Mach. 20, 533–564 (2010). https://doi.org/10.1007/s11023-010-9208-9

  24. 24.

    Pérez y Pérez, R., Gonzalez de Cossio, M., Guerrero, I.: A computer model for the generation of visual compositions. In: Proceedings of the fourth International Conference on Computational Creativity, Sidney, Australia, pp 105–112 (2013)

  25. 25.

    Sharples, M.: How We Write? Writing as Creative Design. Routledge, London (1999)

  26. 26.

    Stiny, G.: Shape grammars and the generative specification of painting and sculpture. In: Petrocelli, O. R. (ed.) The Best Computer Papers of 1971, pp 125–135. Auerbach Publications, Philadelphia (1972)

  27. 27.

    Talton, J., Lou, Y., Lesser, S., Duke, J.: Metropolis procedural modeling. ACM Trans. Graph. 30, 2, Article 11 (2011)

  28. 28.

    Vere, S.: Inductive learning of relational productions. In: Waterman, D. A., Hayes-Roth, F. (eds.) Patter-Directed Inference Systems, pp 281–295. Academic Press Inc (1978)

  29. 29.

    Wertheimer, M., Spillmann, L., Wertheimer, M., Sarris, V., Sekuler, R.: On Perceived Motion and Figural Organization. MIT Press, Cambridge (2012)

  30. 30.

    Yu, T., Bentley. P.: Methods to evolve legal phenotypes. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H P (eds.) Parallel Problem Solving from Nature — PPSN V. Lecture Notes in Computer Science, 1498, pp 280–291. Springer, Berlin (1998)

Download references

Acknowledgments

We thank María González de Cossío for her useful feedback on this computer model and her help in the evaluation of the compositions generated by our system. This work was supported by the Consejo Nacional en Ciencia y Tecnología (CONACyT) in México under Grant 181561.

Author information

Correspondence to Rafael Pérez y Pérez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez y Pérez, R., Guerrero Román, I. A computer agent that develops visual compositions based on the ER-model. Ann Math Artif Intell (2019). https://doi.org/10.1007/s10472-019-9616-3

Download citation

Keywords

  • Computational creativity
  • Engagement and reflection
  • Intelligent systems
  • Visual composition
  • Autonomous design