Blending under deconstruction

The roles of logic, ontology, and cognition in computational concept invention


The cognitive-linguistic theory of conceptual blending was introduced by Fauconnier and Turner in the late 90s to provide a descriptive model and foundational approach for the (almost uniquely) human ability to invent new concepts. Whilst blending is often described as ‘fluid’ and ‘effortless’ when ascribed to humans, it becomes a highly complex, multi-paradigm problem in Artificial Intelligence. This paper aims at presenting a coherent computational narrative, focusing on how one may derive a formal reconstruction of conceptual blending from a deconstruction of the human ability of concept invention into some of its core components. It thus focuses on presenting the key facets that a computational framework for concept invention should possess. A central theme in our narrative is the notion of refinement, understood as ways of specialising or generalising concepts, an idea that can be seen as providing conceptual uniformity to a number of theoretical constructs as well as implementation efforts underlying computational versions of conceptual blending. Particular elements underlying our reconstruction effort include ontologies and ontology-based reasoning, image schema theory, spatio-temporal reasoning, abstract specification, social choice theory, and axiom pinpointing. We overview and analyse adopted solutions and then focus on open perspectives that address two core problems in computational approaches to conceptual blending: searching for the shared semantic structure between concepts—the so-called generic space in conceptual blending—and concept evaluation, i.e., to determine the value of newly found blends.


  1. 1.

    Anderson, A.R., Belnap, N.D., Dunn, J.: Entailment: The Logic of Relevance and Necessity, vol. 2. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  2. 2.

    Antovic, M.: Musical metaphors in Serbian and Romani children: An empirical study. Metaphor. Symb. 24(3), 184–202 (2009)

    Google Scholar 

  3. 3.

    Antovic, M., Bennett, A., Turner, M.: Running in circles or moving along lines: Conceptualization of musical elements in sighted and blind children. Music. Sci. 17(2), 229–245 (2013).

    Article  Google Scholar 

  4. 4.

    Astesiano, E, Bidoit, M, Krieg-Brückner, B, Mosses, P.D., Sannella, D, Tarlecki, A: Casl: The common algebraic specification language. Theor. Comput. Sci. 286(2), 153–196 (2002)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Baader, F, Peñaloza, R: Axiom pinpointing in general tableaux. J. Logic Comput. 20(1), 5–34 (2010). special Issue: Tableaux and Analytic Proof Methods

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D, Patel-Schneider, P.F.: The Description Logic Handbook. Cambridge University Press (2003)

  7. 7.

    Baader, F., Brandt, S., Lutz, C: Pushing the EL Envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 364–*369. Morgan Kaufmann Publishers Inc., San Francisco (2005)

  8. 8.

    Baader, F., Peñaloza, R, Suntisrivaraporn, B.: Pinpointing in the description logic \(\mathcal {{{EL}}}^{+}\). In: Proc. of KI 2007, vol. 4667, pp. 52–67. Springer, LNCS (2007)

  9. 9.

    Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer w.r.t. a background terminology. J. Appl. Log. 5(3), 392–420 (2007)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Baader, F, Kriegel, F, Nuradiansyah, A, Peñaloza, R: Making repairs in description logics more gentle. In: KR, pp. 319–328. AAAI Press (2018)

  11. 11.

    Baumgartner, P, Fuchs, A, Tinelli, C: Darwin: A theorem prover for the model evolution calculus. In: Schulz, S, Sutcliffe, G, Tammet, T (eds.) IJCAR Workshop on Empirically Successful First Order Reasoning (ESFor (aka S4)). Electronic Notes in Theoretical Computer Science (2004)

  12. 12.

    Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Boden, M.A.: The Creative Mind: Myths and Mechanisms. George Weidenfeld and Nicolson Ltd (1990)

  14. 14.

    Bou, F, Eppe, M, Plaza, E, Schorlemmer, M: D2.1: Reasoning with Amalgams. Tech. rep., COINVENT Project, available at (2014)

  15. 15.

    Cambouropoulos, E, Kaliakatsos-Papakostas, M, Kühnberger, K.U., Kutz, O, ASmaill: Concept invention and music: Creating novel harmonies via conceptual blending. In: Proc.of the 9th Int.Conference on Interdisciplinary Musicology (CIM-2014). Berlin (2014)

  16. 16.

    Colton, S., Wiggins, G.: Computational creativity: the final frontier? In: ECAI, vol. 12, pp. 21–26 (2012)

  17. 17.

    Confalonieri, R, Corneli, J, Pease, A, Plaza, E, Schorlemmer, M: Using argumentation to evaluate concept blends in combinatorial creativity. In: Proceedings of the 6th International Conference on Computational Creativity, ICCC15 (2015)

  18. 18.

    Confalonieri, R, Plaza, E, Schorlemmer, M: A process model for concept invention. In: International Conference on Computational Creativity (ICCC16). Paris, France, 1st July (2016)

  19. 19.

    Confalonieri, R., Kutz, O., Galliani, P., Peñaloza, R, Porello, D., Schorlemmer, M., Troquard, N: Coherence, similarity, and concept generalisation. In: Description Logics,, CEUR Workshop Proceedings, vol. 1879 (2017)

  20. 20.

    Confalonieri, R., Eppe, M., Schorlemmer, M., Kutz, O., Peñaloza, R, Plaza, E.: Upward refinement operators for conceptual blending in the description logic \(\mathcal {{{EL}}}^{++}\). Ann. Math. Artif. Intell. 82(1), 69–99 (2018)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Confalonieri, R., Pease, A., Schorlemmer, M., Besold, T.R., Kutz, O., Maclean, E., Kaliakatsos-Papakostas, M.: Concept Invention: Foundations, Implementation, Social Aspects and Applications 1st edn. Computational Synthesis and Creative Systems. Springer International Publishing (2018)

  22. 22.

    Eppe, M., Confalonieri, R., Maclean, E., Kaliakatsos-Papakostas, M.A., Cambouropoulos, E., Schorlemmer, W.M., Codescu, M., Kühnberger, K: Computational invention of cadences and chord progressions by conceptual chord-blending. In: Yang, Q, Wooldridge, M (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 2445–2451. AAAI Press (2015)

  23. 23.

    Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, W.M., Plaza, E.: Asp, amalgamation, and the conceptual blending workflow. In: Calimeri, F, Ianni, G, Truszczynski, M (eds.) Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, vol. 9345, pp. 309–316. Springer, Lecture Notes in Computer Science (2015)

  24. 24.

    Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, M., Plaza, E., Kühnberger, K U: A computational framework for conceptual blending. Artif. Intell. 256, 105–129 (2018)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Falomir, Z, Plaza, E: Towards a model of creative understanding: Deconstructing and recreating conceptual blends using image schemas and qualitative spatial descriptors. Annals of Mathematics and Artificial Intelligence. (2019)

  26. 26.

    Fauconnier, G., Turner, M.: Conceptual integration networks. Cognit. Sci. 22(2), 133–187 (1998)

    Google Scholar 

  27. 27.

    Fauconnier, G., Turner, M: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books (2003)

  28. 28.

    Gangemi, A., Presutti, V: Ontology design patterns. In: Handbook on Ontologies. International Handbooks on Information Systems, pp. 221–243. Springer (2009)

  29. 29.

    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary report. arXiv: (2014)

  30. 30.

    Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, New York (2014)

    Google Scholar 

  31. 31.

    Gentner, D.: Why we’re so smart? In: Gentner, D, Goldin-Meadow, S (eds.) Language in Mind: Advances in the Study of Language and Thought. chap 8, pp. 195–235. MIT Press (2003)

  32. 32.

    Goguen, J.: What is a concept? In: Dau, F, Mugnier, M.L., Stumme, G (eds.) Conceptual Structures: Common Semantics for Sharing Knowledge. 13th International Conference on Conceptual Structures, ICCS 2005, Kassel, Germany, July 17-22, 2005. Proceedings, vol. 3596, pp. 52–77. Springer, Lecture Notes in Artificial Intelligence (2005)

  33. 33.

    Goguen, J.A.: An introduction to algebraic semiotics, with applications to user interface design. In: Computation for Metaphors, Analogy and Agents, no. 1562 in LNCS, pp. 242–291. Springer (1999)

  34. 34.

    Goguen, J.A.: Semiotic morphisms, representations and blending for interface design. In: Proc.of the AMAST Workshop on Algebraic Methods in Language Processing, pp. 1–15. AMAST Press (2003)

  35. 35.

    Goguen, J.A., Harrell, D.F.: Style: A computational and conceptual blending-based approach. In: Argamon, S, Dubnov, S (eds.) The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning, pp. 147–170. Springer, Berlin (2010)

  36. 36.

    Goguen, J.A., Harrell, D.F.: (Last accessed, February 2019) Foundations for active multimedia narrative: Semiotic spaces and structural blending. Available at https://csewebucsdedu/goguen/pps/narrpdf

  37. 37.

    Goguen, J.A., Malcolm, G: Algebraic Semantics of Imperative Programs. MIT (1996)

  38. 38.

    Grice, H.P.: Logic and conversation. In: Cole, P, Morgan, J.L. (eds.) Syntax and Semantics: Speech Acts, vol. 3, pp. 41–58. Academic Press, New York (1975)

  39. 39.

    Gromann, D., Hedblom, M.M.: Kinesthetic mind reader: A method to identify image schemas in natural language. In: Langley, P (ed.) Proc.of the 5th Annual Conference on Advances in Cogntive Systems (ACS). Troy, New York (2017)

  40. 40.

    Grüninger, M, Fox, M.S.: The role of competency questions in enterprise engineering. In: Benchmarking—Theory and Practice, pp. 22–31. Springer (1995)

  41. 41.

    Guarino, N, Oberle, D, Staab, S: Handbook on Ontologies. Springer, Berlin (2009). chap What is an Ontology?, pp. 1–17. International Handbooks on Information Systems

    Google Scholar 

  42. 42.

    Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-generation conceptual modeling. In: Yu, E, Dobbie, G, Jarke, M, Purao, S (eds.) Conceptual Modeling, pp. 13–27. Springer International Publishing, Cham (2014)

  43. 43.

    Hampe, B.: Image schemas in cognitive linguistics: Introduction. In: Hampe, B, Grady, J.E. (eds.) From Perception to Meaning: Image Schemas in Cognitive Linguistics, pp. 1–14. Walter de Gruyter (2005)

  44. 44.

    Hedblom, M.M.: Image Schemas and Concept Invention: Cognitive, Logical and Linguistic Investigations. PhD thesis, Otto-von-Guericke University Magdeburg (2018)

  45. 45.

    Hedblom, M.M., Kutz, O., Neuhaus, F.: Choosing the right path: Image schema theory as a foundation for concept invention. J. Artif. Gen. Intell. 6(1), 21–54 (2015)

    Google Scholar 

  46. 46.

    Hedblom, M.M., Kutz, O., Neuhaus, F.: Image schemas as families of theories. In: Besold, T.R., Kühnberger, KU., Schorlemmer, M., Smaill, A. (eds.) Proceedings of the Workshop “Computational Creativity, Concept Invention, and General Intelligence” 2015, Institute of Cognitive Science, Publications of the Institute of Cognitive Science, vol. 2, pp. 19–33 (2015)

  47. 47.

    Hedblom, M.M., Kutz, O., Neuhaus, F.: Image schemas in computational conceptual blending. Cogn. Syst. Res. 39, 42–57 (2016)

    Google Scholar 

  48. 48.

    Hedblom, M.M., Kutz, O., Mossakowski, T., Neuhaus, F.: Between Contact and Support: Introducing a Logic for Image Schemas and Directed Movement, pp. 256–268. Springer International Publishing, Cham (2017)

    Google Scholar 

  49. 49.

    Horrocks, I, Kutz, O, Sattler, U: The even more irresistible \(\mathcal {SROIQ}\). In: Proceedings of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR2006), pp. 57–67. AAAI Press (2006)

  50. 50.

    Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in OWL ontologies. Web Semantics: Science, Services and Agents on the World Wide Web 3(4), 268–293 (2005)

    Google Scholar 

  51. 51.

    Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts in OWL ontologies. In: ESWC, vol. 6, pp. 170–184. Springer (2006)

  52. 52.

    Koestler, A: The Act of Creation. Macmillan (1964)

  53. 53.

    Kuhn, W.: An image-schematic account of spatial categories. In: Winter, S, Duckham, M, Kulik, L, Kuipers, B (eds.) Spatial Information Theory, Lecture Notes in Computer Science, vol. 4736, pp. 152–168. Springer (2007)

  54. 54.

    Kutz, O., Normann, I.: Context discovery via theory interpretation. In: Proc. of the IJCAI Workshop on Automated Reasoning about Context and Ontology Evolution ARCOE-09. Pasadena (2009)

  55. 55.

    Kutz, O, Mossakowski, T, Lücke, D: Carnap, Goguen, and the Hyperontologies: Logical pluralism and heterogeneous structuring in ontology design, vol. 4. special Issue on ‘Is Logic Universal? (2010)

  56. 56.

    Kutz, O., Mossakowski, T., Hois, J., Bhatt, M., Bateman, J.: Ontological blending in DOL. In: Besold, T, Kühnberger, K.U., Schorlemmer, M, Smaill, A (eds.) Computational Creativity, Concept Invention, and General Intelligence, Proceedings of the 1st International Workshop C3GI@ECAI, Publications of the Institute of Cognitive Science, Osnabrück, vol. 01-2012, Montpellier (2012)

  57. 57.

    Kutz, O., Bateman, J., Neuhaus, F., Mossakowski, T., Bhatt, M.: E pluribus unum: Formalisation, Use-Cases, and Computational Support for Conceptual Blending. In: Computational Creativity Research: Towards Creative Machines. Thinking Machines. Springer, Atlantis (2014)

  58. 58.

    Kutz, O., Neuhaus, F., Mossakowski, T., Codescu, M.: Blending in the hub—towards a collaborative concept invention platform. In: Proc of the 5th International Conference on Computational Creativity. Ljubljana (2014)

  59. 59.

    Kutz, O., Neuhaus, F., Hedblom, M.M., Mossakowski, T., Codescu, M: Ontology patterns with DOWL: The case of blending. In: Description Logics. CEUR Workshop Proceedings, vol. 1577 (2016)

  60. 60.

    Kutz, O, Troquard, N, Hedblom, M.M., Porello, D: The Mouse and the Ball: Towards a cognitively-based and ontologically-grounded logic of agency. In: Proceedings of the 10th International Conference on Formal Ontology in Information Systems (FOIS 2018), pp. 141–148. IOS Press (2018),

  61. 61.

    van der Laag, P.R., Nienhuys-Cheng, S.H.: Completeness and properness of refinement operators in inductive logic programming. J. Logic Program. 34(3), 201–225 (1998)

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Lakatos, I: Proofs and Refutations. Cambridge University Press (1976)

  63. 63.

    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78(1-2), 203–250 (2010)

    MathSciNet  Google Scholar 

  64. 64.

    Lewis, C.I., Langford, C.H.: Symbolic Logic. Appleton-Century-Crofts, New York (1932)

    MATH  Google Scholar 

  65. 65.

    Mandler, J.M., Pagán Cánovas, C: On defining image schemas. Lang. Cogn. 6(4), 510–532 (2014)

    Google Scholar 

  66. 66.

    Mossakowski, T., Kutz, O.: The onto-logical translation graph. In: WoMO, Frontiers in Artificial Intelligence and Applications, vol. 230, pp. 94–109. IOS Press (2011)

  67. 67.

    Mossakowski, T, Maeder, C, Lüttich, K: 13th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2007, Braga, Portugal, March 24 - April 1, 2007, pp. 519–522. Springer, Berlin (2007). chap The Heterogeneous Tool Set, Hets

    Google Scholar 

  68. 68.

    Mossakowski, T., Codescu, M., Neuhaus, F., Kutz, O.: The Road to Universal Logic: Festschrift for the 50th Birthday of Jean-Yves Beziau,́ Volume II. Springer International Publishing, Cham, chap The Distributed Ontology. Modeling and Specification Language – DOL, pp. 489–520 (2015)

  69. 69.

    Neuhaus, F: What is an ontology? arXiv:1810.09171 (2018)

  70. 70.

    Neuhaus, F., Kutz, O., Codescu, M., Mossakowski, T.: Fabricating monsters is hard: Towards the automation of conceptual blending. In: Besold, T, Kuehnberger, K.U., Schorlemmer, M, Smaill, A (eds.) Computational Creativity, Concept Invention, and General Intelligence, Proc.of the 3rd Int.Workshop C3GI@ECAI-14, Publications of the Institute of Cognitive Science, vol. 1–2014, Osnabrück (2014)

  71. 71.

    Normann, I.: Automated Theory Interpretation. PhD thesis Department of Computer Science. Jacobs University, Bremen (2008)

    Google Scholar 

  72. 72.

    Normann, I., Kutz, O.: Ontology Correspondence via Theory Interpretation. In: Workshop on Matching and Meaning AISB-09. Edinburgh (2009)

  73. 73.

    Nuñez, R, Lakoff, G: Where Mathematics Comes From. Basic Books (2001)

  74. 74.

    Object Management Group: The distributed ontology, modeling, and specification language (DOL). Document Number ptc/2016-02-37. Available at (2016)

  75. 75.

    Ontañón, S, Plaza, E.: Amalgams: A formal approach for combining multiple case solutions. In: Bichindaritz, I, Montani, S (eds.) Case-Based Reasoning. Research and Development, pp. 257–271. Springer, ICCBR (2010)

  76. 76.

    Ontañón, S, Plaza, E.: Similarity measures over refinement graphs. Mach. Learn. J. 87(1), 57–92 (2012)

    MathSciNet  MATH  Google Scholar 

  77. 77.

    Pagán, C.C.: Erotic emissions in Greek poetry: A generic integration network. Cogn. Semiot. 6, 7–32 (2010)

    Google Scholar 

  78. 78.

    Pease, A., Lawrence, J., Budzynska, K., Corneli, J., Reed, C.: Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artif. Intell. 246, 181–219 (2017)

    MathSciNet  MATH  Google Scholar 

  79. 79.

    Pereira, F.C.: Creativity and Artificial Intelligence: A Conceptual Blending Approach. Mouton de Gruyter (2007)

  80. 80.

    Porello, D., Troquard, N., Confalonieri, R., Galliani, P., Kutz, O., Peñaloza, R: Repairing socially aggregated ontologies using axiom weakening. In: PRIMA, vol. 10621, pp. 441–449. Springer, Lecture Notes in Computer Science (2017)

  81. 81.

    Porello, D., Troquard, N., Peñaloza, R, Confalonieri, R., Galliani, P., Kutz, O.: Two approaches to ontology integration based on axiom weakening. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-ECAI 2018), pp. 1942–1948 (2018)

  82. 82.

    Porello, D., Kutz, O., Righetti, G., Troquard, N., Galliani, P., Masolo, C.: A toothful of concepts: Towards a theory of weighted concept combination. In: Šimkus, M, Weddell G (eds.) Proceedings of the 32th International Workshop on Description Logics (DL 2019), CEUR-WS, Oslo, Norway, June 18–21, 2019, vol. 2373 (2019)

  83. 83.

    Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R: Towards competency question-driven ontology authoring. In: The Semantic Web: Trends and Challenges, pp. 752–767. Springer (2014)

  84. 84.

    Schlobach, S, Cornet, R: Non-standard reasoning services for the debugging of description logic terminologies. In: Proc. of IJCAI-03, pp. 355–362. Morgan Kaufmann (2003)

  85. 85.

    Schorlemmer, M., Smaill, A., Kühnberger, K.U., Kutz, O., Colton, S., Cambouropoulos, E., Pease, A.: COINVENT: Towards a computational concept invention theory. In: Proceedings of the 5th International Conference on Computational Creativity. Ljubljana (2014)

  86. 86.

    Schorlemmer, M., Confalonieri, R., Plaza, E: Coherent conceptual blending. In: Computational Creativity, Concept Invention, and General Intelligence, C3GI at ESSLLI 2016 (2016)

  87. 87.

    Schorlemmer, M, Confalonieri, R, Plaza, E: The Yoneda Path to the Buddhist Monk Blend. In: First International Workshop on Cognition and Ontologies (CAOS 2016), Annecy, France, 6th July (2016)

  88. 88.

    Schulz, S.: E – A Brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)

    MATH  Google Scholar 

  89. 89.

    Schwering, A., Krumnack, U., Kühnberger, K.U., Gust, H.: Syntactic principles of heuristic-driven theory projection. Cogn. Syst. Res. 10(3), 251–269 (2009)

    Google Scholar 

  90. 90.

    Skjæveland, M.G., Forssell, H, Klüwer, J.W., Lupp, D.P., Thorstensen, E., Waaler, A: Pattern-based ontology design and instantiation with reasonable ontology templates. In: 8th Workshop on Ontology Design and Patterns (WOP 2017)., CEUR Workshop Proceedings, vol. 2043 (2017)

  91. 91.

    St Amant, R, Morrison, C.T., Chang, Y.H., Cohen, P.R., Beal, C: An image schema language. In: International Conference on Cognitive Modeling (ICCM), pp. 292–297 (2006)

  92. 92.

    Thagard, P: Coherence in Thought and Action. The MIT Press (2000)

  93. 93.

    Troquard, N, Confalonieri, R, Galliani, P, Peñaloza, R, Porello, D, Kutz, O: Repairing Ontologies via Axiom Weakening. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1981–1988 (2018)

  94. 94.

    Turner, M.: The Origin of Ideas, Blending, Creativity, and the Human Spark. Oxford University Press (2014)

  95. 95.

    Veale, T.: From conceptual mash-ups to “bad-ass” blends: A robust computational model of conceptual blending. In: Proc. of the 2012. International Conference on Computational Creativity. Dublin (2012)

  96. 96.

    Veale, T.: From conceptual “mash-ups” to “bad-ass” blends: A robust computational model of conceptual blending. In: Proceedings of the Third International Conference on Computational Creativity, International Association for Computational Creativity, ICCC 2012, pp. 1–8 (2012)

  97. 97.

    Veale, T., Donoghue, D.O.: Computation and blending. Cogn. Ling. 11(3-4), 253–282 (2000)

    Google Scholar 

  98. 98.

    Walton, L., Worboys, M: An algebraic approach to image schemas for geographic space. In: Proceedings of the 9th International Conference on Spatial Information Theory COSIT, pp. 357–370. France (2009)

  99. 99.

    Wilson, D., Sperber, D.: Relevance theory. In: Horn, L, Ward, G (eds.) The Handbook of Pragmatics, pp. 607–632. Blackwell (2002)

  100. 100.

    Ẑnidarŝiĉ, M, Cardoso, A, Gervas, P, Martins, P, Hervas, R, Alves, A, Oliveira, H, Xiao, P, Linkola, S, Toivonen, H, Kranjc, J, Lavraĉ, N: Computational creativity infrastructure for online software composition: A conceptual blending use case. In: International Conference on Computational Creativity (ICCC16). Paris, France, 1st July (2016)

Download references


Work on this paper was supported by the project ‘Computational Technologies for Concept Invention’ (COCO) funded by the Province of Bozen-Bolzano–South Tyrol.

The paper builds on a body of work originating from the EU FP7 project COINVENT and later refinements. We would like to thank our co-authors of prior work, in alphabetical order: Tarek R. Besold, Manfred Eppe, Pietro Galliani, Maria M. Hedblom, Till Mossakowski, Fabian Neuhaus, Rafael Peñaloza, Enric Plaza, Daniele Porello, Marco Schorlemmer, and Nicolas Troquard.

We also sincerely thank the anonymous reviewers for their valuable and detailed feedback that helped improve this paper.

This work was supported by the Open Access Publishing Fund provided by the Free University of Bozen-Bolzano.

Author information



Corresponding author

Correspondence to Roberto Confalonieri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Confalonieri, R., Kutz, O. Blending under deconstruction. Ann Math Artif Intell 88, 479–516 (2020).

Download citation


  • Computational concept invention
  • Conceptual blending
  • Ontologies
  • Image schemas
  • Refinement operators

Mathematics Subject Classification (2010)

  • 97R40
  • 68T27