Advertisement

Non-terminating processes in the situation calculus

  • Giuseppe De GiacomoEmail author
  • Eugenia Ternovska
  • Ray Reiter
Article
  • 7 Downloads

Abstract

By their very design, many robot control programs are non-terminating. This paper describes a situation calculus approach to expressing and proving properties of non-terminating programs expressed in Golog, a high level logic programming language for modeling and implementing dynamical systems. Because in this approach actions and programs are represented in classical (second-order) logic, it is natural to express and prove properties of Golog programs, including non-terminating ones, in the very same logic. This approach to program proofs has the advantage of logical uniformity and the availability of classical proof theory.

Keywords

Knowledge representation Reasoning about actions Situation calculus Inductive definitions Formal verification of Golog and ConGolog programs 

Mathematics Subject Classification (2010)

68T27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Unfortunately Ray Reiter passed away in 2002 and could not participate in the exciting developments of the recent years. However his work deeply inspired them, and we are immensely grateful to him.

References

  1. 1.
    Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp 739–782. Elsevier (1977)Google Scholar
  2. 2.
    Baader, F., Liu, H., ul Mehdi, A.: Verifying properties of infinite sequences of description logic actions. In: ECAI, pp. 53–58 (2010)Google Scholar
  3. 3.
    Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of relational data-centric dynamic systems with external services. In: PODS, pp. 163–174 (2013)Google Scholar
  4. 4.
    Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., Masellis, R.D., Felli, P.: Description logic knowledge and action bases. J. Artif. Intell. Res. (JAIR) 46, 651–686 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  6. 6.
    Baier, J.A., Fritz, C., McIlraith, S.A.: Exploiting procedural domain control knowledge in state-of-the-art planners. In: ICAPS, pp. 26–33 (2007)Google Scholar
  7. 7.
    Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact systems. J. Artif. Intell. Res. (JAIR) 51, 333–376 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: First-order μ-calculus over generic transition systems and applications to the situation calculus. Inf. Comput. 259(3), 328–347 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: KR, pp. 589–599 (2008)Google Scholar
  10. 10.
    Claßen, J., Liebenberg, M., Lakemeyer, G., Zarrieß, B.: Exploring the boundaries of decidable verification of non-terminating Golog programs. In: AAAI, pp. 1012–1019 (2014)Google Scholar
  11. 11.
    Cousot, P.: Methods and logics for proving programs. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 841–994 (1990)zbMATHGoogle Scholar
  12. 12.
    Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpretation. In: POPL, pp. 83–94 (1992)Google Scholar
  13. 13.
    De Giacomo, G., Lespérance, Y., Levesque, H.J.: Reasoning about concurrent execution prioritized interrupts, and exogenous actions in the situation calculus. In: IJCAI, pp. 1221–1226 (1997)Google Scholar
  14. 14.
    De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent programming language based on the situation calculus. Artif. Intell. 121(1–2), 109–169 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action theories and decidable verification. In: KR (2012)Google Scholar
  16. 16.
    De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded epistemic situation calculus theories. In: IJCAI (2013)Google Scholar
  17. 17.
    De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action theories. Artif. Intell. 237, 172–203 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    De Giacomo, G., Lespérance, Y., Patrizi, F., Sardiña, S.: Verifying ConGolog programs on bounded situation calculus theories. In: AAAI, pp. 950–956 (2016)Google Scholar
  19. 19.
    De Giacomo, G., Lespérance, Y., Patrizi, F., Vassos, S.: LTL verification of online executions with sensing in bounded situation calculus. In: ECAI, pp. 369–374 (2014)Google Scholar
  20. 20.
    De Giacomo, G., Lespérance, Y., Patrizi, F., Vassos, S.: Progression and verification of situation calculus agents with bounded beliefs. In: AAMAS, pp. 141–148 (2014)Google Scholar
  21. 21.
    De Giacomo, G., Lespérance, Y., Pearce, A.R.: Situation calculus based programs for representing and reasoning about game structures. In: KR (2010)Google Scholar
  22. 22.
    De Giacomo, G., Levesque, H.J.: An incremental interpreter for high-level programs with sensing. In: Levesque, H.J., Pirri, F. (eds.) Logical Foundation for Cognitive Agents: Contributions in Honor of Ray Reiter, pp 86–102. Springer (1999)Google Scholar
  23. 23.
    De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot programs. In: KR, pp. 453–465 (1998)Google Scholar
  24. 24.
    De Giacomo, G., Ternovskaia, E., Reiter, R.: Non-terminating processes in the situation calculus. In: Proc.of the AAAI’97 Workshop on Robots, Softbots, Immobots: Theories of Action, Planning and Control (1997)Google Scholar
  25. 25.
    Emerson, E.A.: Automated temporal reasoning about reactive systems. In: Logics for Concurrency: Structure versus Automata, no. 1043 in Lecture Notes in Computer Science, pp. 41–101. Springer (1996)Google Scholar
  26. 26.
    Fritz, C., Baier, J.A., McIlraith, S.A.: ConGolog, Sin Trans: Compiling ConGolog into basic action theories for planning and beyond. In: KR, pp. 600–610 (2008)Google Scholar
  27. 27.
    Gu, Y., Kiringa, I.: Model checking meets theorem proving: A situation calculus based approach. In: 11th International Workshop on Nonmonotonic Reasoning, Action, and Change (2006)Google Scholar
  28. 28.
    Hehner, E.C.R.: A Practical Theory of Programming. Texts and Monographs in Computer Science Springer (1993)Google Scholar
  29. 29.
    Hennessy, M.: The Semantics of Programming Languages: An Elementary Introduction Using Structural Operational Semantics. Wiley, New York (1990)zbMATHGoogle Scholar
  30. 30.
    Kelly, R.F., Pearce, A.R.: Property persistence in the situation calculus. Artif. Intell. 174(12–13), 865–888 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Knaster, B.: Un thèoréme sur les fonctions d’ensembles. Ann. Soc. Polon. Math. 6, 133–134 (1928)zbMATHGoogle Scholar
  32. 32.
    Kozen, D., Tiuryn, J.: Logics of programs. In: van Leeuwen, J (ed.) Handbook of Theoretical Computer Science, pp 790–840. Elsevier (1990)Google Scholar
  33. 33.
    Leivant, D.: Higher order logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 2. Clarendon Press, pp. 229–321 (1994)Google Scholar
  34. 34.
    Lespérance, Y.: On the epistemic feasibility of plans in multiagent systems specifications. In: 8th International Workshop on Intelligent Agents VIII, ATAL 2001 Seattle, WA, USA, August 1-3, 2001, Revised Papers, pp. 69–85 (2001)Google Scholar
  35. 35.
    Lespérance, Y., Levesque, H.J., Lin, F., Scherl, R.B.: Ability and knowing how in the situation calculus. Stud. Logica. 66(1), 165–186 (2000)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic programming language for dynamic domains. J. Log. Program. 31(1-3), 59–83 (1997)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lin, F.: A first-order semantics for Golog and ConGolog under a second-order induction axiom for situations. In: KR (2014)Google Scholar
  38. 38.
    Loeckx, J., Sieber, K.: Foundation of Program Verification. Teubner-Wiley, New York (1987)CrossRefGoogle Scholar
  39. 39.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems, vol.1–2. Springer (1992)Google Scholar
  40. 40.
    Moschovakis, Y.: Elementary Induction on Abstract Structures. Amsterdam (1974)Google Scholar
  41. 41.
    Park, D.: Fixpoint induction and proofs of program properties. In: Machine Intelligence, vol. 5, pp. 59–78. Edinburgh University Press (1970)Google Scholar
  42. 42.
    Plotkin, G.: A structural approach to operational semantics. Tech. Rep. DAIMI-FN-19, Computer Science Dept. Aarhus Univ Denmark (1981)Google Scholar
  43. 43.
    Reiter, R.: The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp 359–380. Academic Press, San Diego (1991)CrossRefGoogle Scholar
  44. 44.
    Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press (2001)Google Scholar
  45. 45.
    Sardiña, S., De Giacomo, G.: Composition of ConGolog programs. In: IJCAI, pp. 904–910 (2009)Google Scholar
  46. 46.
    Sardiña, S., De Giacomo, G., Lespérance, Y., Levesque, H.J.: On the semantics of deliberation in IndiGolog- from theory to implementation. Ann. Math. Artif. Intell. 41(2–4), 259–299 (2004)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agents specification language and verification environment for multiagent systems. In: AAMAS, pp. 19–26 (2002)Google Scholar
  48. 48.
    Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via the customization of Golog programs with user preferences. In: Conceptual Modeling: Foundations and Applications - Essays in Honor of John Mylopoulos, pp. 319–334 (2009)CrossRefGoogle Scholar
  49. 49.
    Stirling, C.: Modal and temporal logics for processes. In: Logics for Concurrency: Structure versus Automata, no. 1043 in Lecture Notes in Computer Science, pp. 149–237. Springer (1996)Google Scholar
  50. 50.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Ternovskaia, E.: Inductive definability and the situation calculus. In: Transactions and Change in Logic Databases, International Seminar on Logic Databases and the Meaning of Change, Schloss Dagstuhl, Germany, September 23-27, 1996 and ILPS ’97 Post-Conference Workshop on (Trans)Actions and Change in Logic Programming and Deductive Databases, (DYNAMICS’97) Port Jefferson, NY, USA, October 17, 1997, Invited Surveys and Selected Papers, pp. 227–248 (1998)CrossRefGoogle Scholar
  52. 52.
    Ternovskaia, E.: Automata theory for reasoning about actions. In: IJCAI, pp. 153–159 (1999)Google Scholar
  53. 53.
    Wang, Y., Chang, L., Li, F., Gu, T.: Verification of branch-time property based on dynamic description logic. In: Intelligent Information Processing VII - 8th IFIP TC 12 International Conference, IIP 2014, Hangzhou, China, October 17-20, 2014, Proceedings, pp. 161–170 (2014)Google Scholar
  54. 54.
    Zarrieß, B., Claßen, J.: Verifying CTL* properties of Golog programs over local-effect actions. In: ECAI, pp. 939–944 (2014)Google Scholar
  55. 55.
    Zarrieß, B., Claßen, J.: Decidable verification of Golog programs over non-local effect actions. In: AAAI, pp. 1109–1115 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Università di Roma “La Sapienza”RomeItaly
  2. 2.Simon Fraser UniversityVancouverCanada
  3. 3.University of TorontoTorontoCanada

Personalised recommendations