Advertisement

A multiparametric view on answer set programming

  • Johannes K. FichteEmail author
  • Martin Kronegger
  • Stefan Woltran
Article
  • 19 Downloads

Abstract

Disjunctive answer set programming (ASP) is an important framework for declarative modeling and problem solving, where the computational complexity of basic decision problems like consistency (deciding whether a program has an answer set) is located on the second level of the polynomial hierarchy. During the last decades different approaches have been applied to find tractable fragments of programs, in particular, also using parameterized complexity. However, the full potential of parameterized complexity has not been unlocked since only one or very few parameters have been considered at once. In this paper, we consider several natural parameters for the consistency problem of disjunctive ASP. In addition, we also take the sizes of the answer sets into account; a restriction that is particularly interesting for applications requiring small solutions as encoding subset minimization problems in ASP can be done directly due to inherent minimization in its semantics. Previous work on parameterizing the consistency problem by the size of answer sets yielded mostly negative results. In contrast, we start from recent findings for the problem WMMSAT and show several novel fixed-parameter tractability (fpt) results based on combinations of parameters. Moreover, we establish a variety of hardness results (paraNP, W[2], and W[1]-hardness) to assess tightness of our parameter combinations.

Keywords

Answer set programming (ASP) Parameterized complexity theory Multiparametric complexity Fixed-parameter tractability Multi parameterizations 

Mathematics Subject Classification (2010)

Primary 03D15 Secondary 68T30, 03B42, 03B70, 68T27, 8Q15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Arora, S., Barak, B.: Computational Complexity: a Modern Approach. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  2. 2.
    Bliem, B., Moldovan, M., Morak, M., Woltran, S.: The impact of treewidth on ASP grounding and solving. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17). pp. 852–858. The AAAI Press (2017)Google Scholar
  3. 3.
    Bliem, B., Ordyniak, S., Woltran, S.: Clique-width and directed width measures for answer-set programming. In: Fox, M., Kaminka, G. (eds.) Proceedings of the 22st Eureopean Conference on Artificial Intelligence (ECAI’16). Frontiers in Artificial Intelligence and Applications, vol. 285, pp 1105–1113. IOS Press, The Hague (2016). extended version arXiv:1606.09449
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.: Parameterized complexity analysis in computational biology. Bioinformatics 11 (1), 49–57 (1995)Google Scholar
  5. 5.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parameterized complexity of sequence alignment and consensus. Theor. Comput. Sci. 147(1&2), 31–54 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bomanson, J., Gebser, M., Janhunen, T.: Improving the normalization of weight rules in answer set programs. In: Fermé, E., Leite, J. (eds.) Proceedings of the 14th European Conference on Logics in Artificial Intelligence (JELIA’14), Lecture Notes in Computer Science, vol. 8761, pp 166–180. Springer, Funchal (2014)Google Scholar
  7. 7.
    Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and sorting constructions. In: Cabalar, P., Son, T. (eds.) Proceedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13). Lecture Notes in Computer Science, vol. 8148, pp 187–199. Springer, Corunna (2013)Google Scholar
  8. 8.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J (ed.) Handbook of Theoretical Computer Science, Vol.B, Vol. Formal Models and Semantics, pp 193–242. Elsevier Science Publishers, North-Holland (1990)Google Scholar
  9. 9.
    Creignou, N., Meier, A., Müller, J.S., Schmidt, J., Vollmer, H.: Paradigms for parameterized enumeration. Theor. Comput. Sci. 60(4), 737–758 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Dániel Marx, M.P., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)zbMATHGoogle Scholar
  11. 11.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)Google Scholar
  13. 13.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013)zbMATHGoogle Scholar
  14. 14.
    Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. on Satisfiability Boolean Modeling and Computation 2(1-4), 1–26 (2006)zbMATHGoogle Scholar
  15. 15.
    Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Eiter, T., Polleres, A.: Towards automated integration of guess and check programs in answer set programming: a meta-interpreter and applications. Theory Pract. Logic Program. 6(1-2), 23–60 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fichte, J.K.: The good, the bad, and the odd: Cycles in answer-set programs. In: Lassiter, D., Slavkovik, M. (eds.) Proceedings of the 23rd European Summer School in Logic, Language and Information (ESSLLI’11) and in New Directions in Logic, Language and Computation (ESSLLI’10 and ESSLLI’11 Student Sessions, Selected Papers Series), Lecture Notes in Computer Science, vol. 7415, pp 78–90. Springer, Berlin (2012)Google Scholar
  18. 18.
    Fichte, J.K., Hecher, M.: Exploiting treewidth for counting projected answer sets. In: Lierler, Y., Woltran, S. (eds.) Proceedings of the 15th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR’19). Philadelphia, . to appear (2019)Google Scholar
  19. 19.
    Fichte, J.K., Hecher, M., Meier, A.: Counting complexity for reasoning in abstract argumentation. In: Hentenryck, P.V., Zhou, Z. (eds.) Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19). The AAAI Press, Honolulu (2019)Google Scholar
  20. 20.
    Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded treewidth revisited. In: Balduccini, M., Janhunen, T (eds.) Proceedings of the 14th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’17). Lecture Notes in Computer Science, vol. 10377, pp 132–145. Springer, Espoo (2017)Google Scholar
  21. 21.
    Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: dynASP2.5: Dynamic programming on tree decompositions in action. In: Lokshtanov, D., Nishimura, N (eds.) Proceedings of the 12th International Symposium on Parameterized and Exact Computation (IPEC’17). pp. 17:1–17:12. Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl Publishing (2017)Google Scholar
  22. 22.
    Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting treewidth for projected model counting and its limits. In: Beyersdorff, O., Wintersteiger, C. (eds.) Proceedings on the 21th International Conference on Theory and Applications of Satisfiability Testing (SAT’18). Lecture Notes in Computer Science, vol. 10929, pp 165–184. Springer, Oxford (2018)Google Scholar
  23. 23.
    Fichte, J.K., Hecher, M., Schindler, I.: Default logic and bounded Treewidth. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) Proceedings of the 12th International Conference on Language and Automata Theory and Applications (LATA’18). Lecture Notes in Computer Science, vol. 10792, pp 130–142. Springer, Ramat Gan (2018)Google Scholar
  24. 24.
    Fichte, J.K., Meier, A., Schindler, I.: Strong backdoors for default logic. In: Creignou, N., Le Berre, D (eds.) Proceedings of the 19th International Conference Theory and Applications of Satisfiability Testing (SAT’16), pp 45–59. Springer, Bordeaux (Jul 2016)Google Scholar
  25. 25.
    Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. ACM Trans. Comput. Log. 17(1), 7 (2015)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Artif. Intell. 220(0), 64–103 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Fichte, J.K., Szeider, S.: Backdoor trees for answer set programming. In: Bogaerts, B., Harrison, A. (eds.) Proceedings of the 10th Workshop on Answer Set Programming and Other Computing Paradigms co-located with the 14th International Conference on Logic Programming and Nonmonotonic Reasoning (ASPOCP@LPNMR’17), vol. 1868, pp 9:1–14. CEUR Workshop Proceedings (CEUR-WS.org), Espoo (Jul 2017)Google Scholar
  28. 28.
    Fichte, J.K., Truszczyński, M., Woltran, S.: Dual-normal programs – the forgotten class. Theory and Practice of Logic Programming. In: proceedings of the 31st International Conference on Logic Programming (ICLP’15), pp. 495–510 (2015)Google Scholar
  29. 29.
    Flum, J., Grohe, M.: Describing parameterized complexity classes. Inf. Comput. 187(2), 291–319 (2003)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Flum, J., Grohe, M.: Parameterized Complexity Theory Theoretical Computer Science, vol. XIV. Springer, Berlin (2006)zbMATHGoogle Scholar
  31. 31.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in practice. Morgan & Claypool (2012)Google Scholar
  32. 32.
    Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set semantics. ACM Trans. Comput. Log. 14(2), 15 (2013)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. Theory Pract. Logic Program. 11(2-3), 323—360 (2011)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proceedings of the 5th International Conference and Symposium on Logic Programming (ICLP/SLP’88), vol. 2, pp 1070–1080. MIT Press, Seattle (1988)Google Scholar
  35. 35.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. N. Gener. Comput. 9(3/4), 365–386 (1991)zbMATHGoogle Scholar
  36. 36.
    Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and nonmonotonic reasoning. Artif. Intell. 138(1-2), 55–86 (2002)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database problems. Comput. J. 51(3), 303–325 (2008)Google Scholar
  39. 39.
    Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth. In: Boutilier, C (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09), vol. 2, pp 816–822. The AAAI Press, Pasadena (2009)Google Scholar
  40. 40.
    Janhunen, T.: On the effect of default negation on the expressiveness of disjunctive rules. In: Eiter, T., Faber, W., Truszczyński, M (eds.) Proceedings of the 6th International Conference on Logic Programming and Nonmotonic Reasoning (LPNMR’01). Lecture Notes in Computer Science, vol. 2173, pp 93–106. Springer, Vienna (2001)Google Scholar
  41. 41.
    Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning – Essays Dedicated to Michael Gelfond on the Occasion of His 65Th Birthday, Lecture Notes in Artificial Intelligence, vol. 6565, pp 111–130. Springer, Berlin (2011)Google Scholar
  42. 42.
    Janota, M., Marques-Silva, J.: On deciding mus membership with QBF. In: Lee, J (ed.) Proceedings of the 17th International Conference on Principles and Practice of Constraint Programming (CP’11). Lecture Notes in Computer Science, vol. 6876, pp 414–428. Springer, Perugia (2011)Google Scholar
  43. 43.
    Kronegger, M., Ordyniak, S., Pfandler, A.: Backdoors to planning. In: Brodley, C.E., Stone, P (eds.) Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI’14), pp 2300–2307. The AAAI Press, Québec City (2014)Google Scholar
  44. 44.
    Kronegger, M., Ordyniak, S., Pfandler, A.: Variable-deletion backdoors to planning. In: Bonet, B., Koenig, S (eds.) Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), pp 3305–3312. The AAAI Press, Austin (2015)Google Scholar
  45. 45.
    Kronegger, M., Pfandler, A., Pichler, R.: Parameterized complexity of optimal planning: A detailed map. In: Rossi, F., Thrun, S (eds.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), pp 954–961. The AAAI Press, Beijing (2013)Google Scholar
  46. 46.
    Lackner, M., Pfandler, A.: Fixed-parameter algorithms for finding minimal models. In: Eiter, T., McIlraith, S (eds.) Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning (KR’12), pp 85–95. The AAAI Press, Rome (2012)Google Scholar
  47. 47.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Inf. Comput. 185(1), 41–55 (2003)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation, Lecture Notes in Computer Science, vol. 6300, pp 488–503. Springer, Berlin (2010)Google Scholar
  49. 49.
    Lonc, Z., Truszczyński, M.: Fixed-parameter complexity of semantics for logic programs. ACM Trans. Comput. Log. 4(1), 91–119 (2003)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D. (eds.) The Logic Programming Paradigm: a 25-Year Perspective, pp 375–398. Artificial Intelligence, Springer, Berlin (1999)Google Scholar
  51. 51.
    Marx, D., Pilipczuk, M.: Everything you always wanted to know about the parameterized complexity of Subgraph Isomorphism (but were afraid to ask). In: Mayr, E. W., Portier, N (eds.) Proceedings of the 31st International Symposium on Theoretical Aspects of Computer Science (STACS’14). Leibniz International Proceedings in Informatics (LIPIcs), vol. 25, pp 542–553. Dagstuhl Publishing, Lyon (2014)Google Scholar
  52. 52.
    Meier, A., Schindler, I., Schmidt, J., Thomas, M., Vollmer, H.: On the parameterized complexity of non-monotonic logics. Arch. Math. Log. 54(5-6), 685–710 (2015)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)Google Scholar
  54. 54.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) Non-Monotonic Extensions of Logic Programming, pp 57–70. Springer, Berlin (1997)Google Scholar
  55. 55.
    Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The seventh QBF solvers evaluation (QBFEVAL’10). In: Strichman, O., Szeider, S (eds.) Proceedings of the 13th International Conference Theory and Applications of Satisfiability Testing (SAT’10). Lecture Notes in Computer Science, vol. 6175, pp 237–250. Springer, Edinburgh (2010)Google Scholar
  56. 56.
    Pichler, R., Rümmele, S., Szeider, S., Woltran, S.: Tractable answer-set programming with weight constraints: bounded treewidth is not enough. Theory Pract. Logic Program. 14(2), 141–164 (2014)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC’78), pp 216–226. New York, Assoc. Comput. Mach. (1978)Google Scholar
  58. 58.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1-2), 181–234 (2002)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps/ (2002)
  60. 60.
    Truszczyński, M.: Trichotomy and dichotomy results on the complexity of reasoning with disjunctive logic programs. Theory Pract. Logic Program. 11, 881–904 (2011)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Tu, P.H., Son, T.C., Gelfond, M., Morales, A.R.: Approximation of action theories and its application to conformant planning. Artif. Intell. 175(1), 79–119 (2011). John McCarthy’s LegacyMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TU DresdenDresdenGermany
  2. 2.Johannes Kepler University LinzLinzAustria
  3. 3.TU WienViennaAustria

Personalised recommendations