Advertisement

Privacy stochastic games in distributed constraint reasoning

  • Julien SavauxEmail author
  • Julien Vion
  • Sylvain Piechowiak
  • René Mandiau
  • Toshihiro Matsui
  • Katsutoshi Hirayama
  • Makoto Yokoo
  • Shakre Elmane
  • Marius Silaghi
Article
  • 3 Downloads

Abstract

In this work, we approach the issue of privacy in distributed constraint reasoning by studying how agents compromise solution quality for preserving privacy, using utility and game theory. We propose a utilitarian definition of privacy in the context of distributed constraint reasoning, detail its different implications, and present a model and solvers, as well as their properties. We then show how important steps in a distributed constraint optimization with privacy requirements can be modeled as a planning problem, and more specifically as a stochastic game. We present experiments validating the interest of our approach, according to several criteria.

Keywords

Privacy Constraint reasoning Distributed systems Utilitarian agents 

Mathematics Subject Classification (2010)

68T01 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Arshad, M., Silaghi, M.-C.: Distributed simulated annealing. Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems, pp. 112 (2004)Google Scholar
  2. 2.
    Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton (1957)Google Scholar
  3. 3.
    Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bistarelli, S., Foley, S.N., O’Sullivan, B., Santini, F.: Semiring-based frameworks for trust propagation in small-world networks and coalition formation criteria. Secur. Commun. Netw. 3(6), 595–610 (2010)CrossRefGoogle Scholar
  5. 5.
    Brandt, F., Conitzer, V., Lang, J., Procaccia, A.: Handbook of CoComputation Social Choice. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  6. 6.
    Burnett, C., Norman, T.J., Sycara, K.P., Oren, N: Supporting trust assessment and decision making in coalitions. IEEE Intell. Syst. 29(4), 18–24 (2014)CrossRefGoogle Scholar
  7. 7.
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to computational social choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plasil, F. (eds.) SOFSEM 2007: Theory and Practice of Computer Science, 33rd Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, 2007, Proceedings, vol. 4362, pp. 51–69. Springer (2007)Google Scholar
  8. 8.
    Cointe, N., Bonnet, G., Boissier, O.: Ethical judgment of agents’ behaviors in multi-agent systems. In: Jonker, C.M., Marsella, S., Thangarajah, J., Tuyls, K. (eds.) Proceedings of the International Conference on Autonomous Agents & Multiagent Systems, Singapore. International Foundation for Autonomous Agents and Multiagent Systems, ACM, pp. 1106–1114 (2016)Google Scholar
  9. 9.
    Endriss, U., Maudet, N.: Welfare engineering for multiagent systems. In: Omicini, A., Petta, P., Pitt, J. (eds.) Proceedings of the 4th International Workshop Engineering Societies in the Agent World (ESAW-2003), volume 3071 of Lecture Notes in Artificial Intelligence (LNAI), pp. 93–106. Springer (2004)Google Scholar
  10. 10.
    Faltings, B., Léauté, T., Petcu, A.: Privacy guarantees through distributed constraint satisfaction. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, vol. 2, pp. 350–358. IEEE Computer Society, Sydney (2008)Google Scholar
  11. 11.
    Greenstadt, R., Grosz, B., Smith, M.D.: SSDPOP: improving the privacy of DCOP with secret sharing. In: Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory, O. (eds.) Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems, pp. 171. IFAAMAS (2007)Google Scholar
  12. 12.
    Greenstadt, R., Pearce, J.P., Bowring, E., Tambe, M.: Experimental analysis of privacy loss in dcop algorithms. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS’06, pp. 1424–1426. ACM, New York (2006)Google Scholar
  13. 13.
    Grinshpoun, T.: When you say (DCOP) privacy, what do you mean? - categorization of DCOP privacy and insights on internal constraint privacy. In: Filipe, J., Fred, A.L.N. (eds.) ICAART 2012 - Proceedings of the 4th International Conference on Agents and Artificial Intelligence, Volume 1 - Artificial Intelligence, pp. 380–386. SciTePress, Vilamoura (2012)Google Scholar
  14. 14.
    Guo, A.Y., Lesser, V.R.: Stochastic planning for weakly-coupled distributed agents. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 326–328. ACM, Hakodate (2006)Google Scholar
  15. 15.
    Hamila, M.A., Strugeon, E.G.-L., Mandiau, R., Mouaddib, A.I., Ghorbani, A.A., Hacid, M.-S., Yamaguchi, T.: An algorithm for multi-robot planning: Sginfinitevi. In: Huang, J.X. (ed.) Proceedings of the 2010 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2010, pp. 141–148. IEEE Computer Society Press, Toronto (2010)Google Scholar
  16. 16.
    Hamila, M.A., Strugeon, E.G.-L., Mandiau, R., Mouaddib, A.-I.: Strategic dominance and dynamic programming for multi-agent planning - application to the multi-robot box-pushing problem. In: Filipe, Joaquim , Fred, Ana L. N. (eds.) ICAART 2012 - Proceedings of the 4th International Conference on Agents and Artificial Intelligence, Volume 2 - Agents, pp. 91–97. SciTePress, Vilamoura (2012)Google Scholar
  17. 17.
    Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially observable stochastic games. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, pp. 709–715. AAAI Press / The MIT Press, San Jose (2004)Google Scholar
  18. 18.
    Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security 15, pp. 129–144. USENIX Association, Washington (2015)Google Scholar
  19. 19.
    Herzig, A., Lorini, E., Hübner, J.F., Vercouter, L.: A logic of trust and reputation. Log. J. IGPL 18(1), 214–244 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1-2), 99–134 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kearns, M.J., Mansour, Y., Singh, S.P.: Fast planning in stochastic games. In: Boutilier, C., Goldszmidt, M. (eds.) UAI ’00: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence, Stanford University, Stanford, pp. 309–316. Morgan Kaufmann (2000)Google Scholar
  22. 22.
    Kumar, A., Zilberstein, S.: Dynamic programming approximations for partially observable stochastic games. In: Chad Lane, H., Guesgen, H.W. (eds.) Proceedings of the Twenty-Second International Florida Artificial Intelligence Research Society Conference. AAAI Press, Sanibel Island (2009)Google Scholar
  23. 23.
    Léauté, T., Faltings, B.: Protecting privacy through distributed computation in multi-agent decision making. J. Artif Intell. Res. 47, 649–695 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In: 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), pp. 310–317. IEEE Computer Society, New York (2004)Google Scholar
  25. 25.
    Mailler, R.: Improving the privacy of the asynchronous partial overlay protocol. Multiagent Grid Syst. 8(2), 165–186 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mandiau, R., Vion, J., Piechowiak, S., Monier, P.: Multi-variable distributed backtracking with sessions. Appl. Intell. 41(3), 736–758 (2014)CrossRefGoogle Scholar
  27. 27.
    Marsh, S.: Trust in distributed artificial intelligence, pp. 94–112. Springer, Berlin (1994)Google Scholar
  28. 28.
    Modi, P.J., Shen, W.-M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1-2), 149–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nash, J.F.: Non cooperative games. Ann. Math. 54(2), 286–295 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ramchurn, S.D., Jennings, N.R., Sierra, C., Godo, L.: Devising A trust model for multi-agent interactions using confidence and reputation. Appl. Artif. Intell. 18(9-10), 833–852 (2004)CrossRefGoogle Scholar
  31. 31.
    Rapoport, A., Chammah, A.M.: Prisoner’s dilemma: A study in conflict and cooperation, vol. 165. University of Michigan Press, Ann Arbor (1965)CrossRefGoogle Scholar
  32. 32.
    Rapoport, A., Chammah, A.M.: The game of chicken. Amer. Behav. Sci. 10 (3), 10–28 (1966)CrossRefGoogle Scholar
  33. 33.
    Russell, S., Norvig, P.: Artificial intelligence: a modern approach (2010)Google Scholar
  34. 34.
    Savaux, J., Vion, J., Piechowiak, S., Mandiau, R, Matsui, T., Hirayama, K., Yokoo, M., Elmane, S., Silaghi, M.: Stochastic game modelling for distributed constraint reasoning with privacy. In International Symposium on Artificial Intelligence and Mathematics, ISAIM 2018, Fort Lauderdale, Florida (2018)Google Scholar
  35. 35.
    Savaux, J., Vion, J., Piechowiak, S., Mandiau, R., Matsui, T., Hirayama, K., Yokoo, M., Elmane, S., Silaghi, M.-C.: Privacitė dans les discsp pour agents utilitaires. In: JFSMA Vingt-quatrième journėes Francophones sur les systèmes Multi-Agents, JFSMA 2016 , pp. 129–138, Rouen (2016)Google Scholar
  36. 36.
    Savaux, J., Vion, J., Piechowiak, S., Mandiau, R., Matsui, T., Hirayama, K., Yokoo, M., Elmane, S., Silaghi, M.-C.: Discsps with privacy recast as planning problems for self-interested agents. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 359–366. IEEE (2016)Google Scholar
  37. 37.
    Savaux, J., Vion, J., Piechowiak, S., Mandiau, R., Matsui, T., Hirayama, K., Yokoo, M., Elmane, S., Silaghi, M.: Utilitarian approach to privacy in distributed constraint optimization problems. In: Rus, V., Markov, Z. (eds.) Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2017, pp. 454–459. AAAI Press, Marco Island (2017)Google Scholar
  38. 38.
    Shapley, L. S.: Stochastic games. Proc. Natl. Acad. Sci. USA (PNAS) 39, 1095–1100 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Silaghi, M.-C., Abhyankar, A., Zanker, M., Barták, R.: Desk-mates (stable matching) with privacy of preferences, and a new distributed CSP framework. In: Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference, Clearwater Beach, pp. 671–677 (2005)Google Scholar
  40. 40.
    Silaghi, M.-C., Faltings, B.: A comparison of distributed constraint satisfaction techniques with respect to privacy. In: Proceedings of the 3rd workshop on distributed constraints reasoning (AAMAS - DCR-02). Bologna (2002)Google Scholar
  41. 41.
    Silaghi, M.-C., Mitra, D.: Distributed constraint satisfaction and optimization with privacy enforcement. In: 2004 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2004), pp. 531–535, Beijing (2004)Google Scholar
  42. 42.
    Silaghi, M.-C., Rajeshirke, V.: The effect of policies for selecting the solution of a discsp on privacy loss. In: Proceedings of AAMAS, pp. 1396–1397 IEEE Computer Society (2004)Google Scholar
  43. 43.
    Silaghi, M.-C., Sam-Haroud, D., Faltings, B.: Distributed asynchronous search with private constraints. In: Rosenschein, J.S., Sierra, C., Gini, M. (eds.) AGENTS 2000 Proceedings of the fourth international conference on Autonomous agents, pp. 177–178. ACM, Barcelona (2000)Google Scholar
  44. 44.
    Solan, E., Vieille, N.: Stochastic games. Proc. Natl. Acad. Sci. (PNAS) USA 112(45), 13743–13746 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Such, J.M., Espinosa, A., García-fornes, A.: A survey of privacy in multi-agent systems. Knowl. Eng. Rev. 29(3), 314–344 (2014)CrossRefGoogle Scholar
  46. 46.
    Tassa, T., Zivan, R., Grinshpoun, T.: Max-sum goes private. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 425–431. AAAI Press, Buenos Aires (2015)Google Scholar
  47. 47.
    Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: A survey (1995)Google Scholar
  48. 48.
    Yaich, R., Boissier, O., Picard, G., Jaillon, P.: Impact of social influence on trust management within communities of agents. Web Intell. 15(3), 251–268 (2017)CrossRefGoogle Scholar
  49. 49.
    Yeoh, W., Felner, A., Koenig, S.: Bnb-adopt: An asynchronous branch-and-bound dcop algorithm. In: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems (AAMAS 2008), pp. 591–598. International Foundation for Autonomous Agents and Multiagent Systems, Estoril (2008)Google Scholar
  50. 50.
    Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction problem: Formalization and algorithms. IEEE Trans. Knowl. Data Eng. 10(5), 673–685 (1998)CrossRefGoogle Scholar
  51. 51.
    Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction problem: Formalization and algorithms. IEEE Trans. Knowl. Data Eng. 10(5), 673–685 (1998)CrossRefGoogle Scholar
  52. 52.
    Yokoo, M., Ishida, T., Durfee, E.H., Kuwabara, K.: Distributed constraint satisfaction for formalizing distributed problem solving. In: Proceedings of the 12th IEEE International Conference on Distributed Computing Systems, pp. 614–621. IEEE, Yokohoma (1992)Google Scholar
  53. 53.
    Zardi, H., Romdhane, L.B., Guessoum, Z.: Efficiently mining community structures in weighted social networks. Int. J. Data Min. Modell. Manag. IJDMMM 8(1), 32–61 (2016)Google Scholar
  54. 54.
    Zhang, C., Lesser, V.R.: Coordinated multi-agent reinforcement learning in networked distributed pomdps. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco (2011)Google Scholar
  55. 55.
    Zhang, W., Wang, G., Wittenburg, L.: Distributed stochastic search for constraint satisfaction and optimization: Parallelism, phase transitions and performance. In: Proceedings of AAAI Workshop on Probabilistic Approaches in Search, Alberta, Canada (2002)Google Scholar
  56. 56.
    Zivan, R., Meisels, A.: Synchronous vs asynchronous search on discsps. In: Proceedings of the First European Workshop on Multi-Agent Systems (EUMAS), Oxford, England (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julien Savaux
    • 1
    Email author
  • Julien Vion
    • 1
  • Sylvain Piechowiak
    • 1
  • René Mandiau
    • 1
  • Toshihiro Matsui
    • 2
  • Katsutoshi Hirayama
    • 3
  • Makoto Yokoo
    • 4
  • Shakre Elmane
    • 5
  • Marius Silaghi
    • 5
  1. 1.LAMIH UMR CNRS 8201Universite de Polytechnique Hauts-de-FranceValenciennesFrance
  2. 2.Nagoya Institute of TechnologyNagoyaJapan
  3. 3.Kobe UniversityKobeJapan
  4. 4.Kyushu UniversityKyushuJapan
  5. 5.Florida Institute of TechnologyMilbourneUSA

Personalised recommendations