Acronyms: identification, expansion and disambiguation

  • Kayla Jacobs
  • Alon Itai
  • Shuly WintnerEmail author


Acronyms—words formed from the initial letters of a phrase—are important for various natural language processing applications, including information retrieval and machine translation. While hand-crafted acronym dictionaries exist, they are limited and require frequent updates. We present a new machine-learning-based approach to automatically build an acronym dictionary from unannotated texts. This is the first such technique that specifically handles non-local acronyms, i.e., that can determine an acronym’s expansion even when the expansion does not appear in the same document as the acronym. Our approach automatically enhances the dictionary with contextual information to help address the acronym disambiguation task (selecting the most appropriate expansion for a given acronym in context), outperforming dictionaries built using prior techniques. We apply the approach to Modern Hebrew, a language with a long tradition of using acronyms, in which the productive morphology and unique orthography adds to the complexity of the problem.


Acronyms Modern Hebrew Natural language processing 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Ran El-Yaniv, Doug Freud, Assaf Glazer, Shie Mannor, and Shaul Markovitz for their machine learning advice. We thank Rafi Cohen for his help with LDA, Nachum Dershowitz for his historical acronym guidance, Chaim Kutnicki for his efficient coding support, Tomer Ashur and Sela Ferdman for their pre-processing of the Wikipedia corpus, and Josh Wortman for his dictionary assistance. Statistically significant improvements to our math were provided by Nicholas Mader, Breanna Miller, Tony Rieser, Zach Seeskin, and Brandon Willard. Thanks to acronym annotators Yosi Atia, Hannah Fadida, Limor Leibovich, Lior Leibovich, Shachar Maidenbaum, Elisheva Rotman, and Beny Shlevich. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 1269/07).


  1. 1.
    Ashkenazi, S., Yarden, D.: Treasury of acronyms. Kiryat Sefer, Jerusalem. In Hebrew (1994)Google Scholar
  2. 2.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol 2, 27:1–27:27 (2011)CrossRefGoogle Scholar
  5. 5.
    Dannélls, D.: Acronym recognition: recognizing acronyms in Swedish texts. Master’s Thesis, Department of Linguistics, University of Gothenburg, Gothenburg (2006)Google Scholar
  6. 6.
    Dannélls, D.: Automatic acronym recognition. In: Proceedings of the 11th conference of the european chapter of the association for computational linguistics. Trento, Italy, pp. 167–170 (2006)Google Scholar
  7. 7.
    Dannélls, D.: Acronym classification using feature combinations (2007)Google Scholar
  8. 8.
    HaCohen-Kerner, Y., Kass, A., Peretz, A.: Baseline methods for automatic disambiguation of abbreviations in Jewish law documents. In: Vicedo, J.L., Martínez-Barco, P., Munoz, R., Noeda, M.S. (eds.) Proceedings of the 4th international conference on advances in natural language, lecture notes in artificial intelligence, vol. 3230, pp. 58–69. Springer, Berlin (2004)Google Scholar
  9. 9.
    HaCohen-Kerner, Y., Kass, A., Peretz, A.: Abbreviation disambiguation: experiments with various variants of the one sense per discourse hypothesis. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) Lecture Notes in Computer Science, Natural Language and Information Systems, vol. 5039. Springer, pp. 27–39. (2008)
  10. 10.
    HaCohen-Kerner, Y., Kass, A., Peretz, A.: Combined one sense disambiguation of abbreviations. In: Proceedings of the 46th annual meeting of the association for computational linguistics on human language technologies: short papers, HLT-Short ’08. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 61–64. (2008)
  11. 11.
    HaCohen-Kerner, Y., Kass, A., Peretz, A.: HAADS: a hebrew aramaic abbreviation disambiguation system. J. Am. Soc. Inf. Sci. Technol. 61(9), 1923–1932 (2010)CrossRefGoogle Scholar
  12. 12.
    HaCohen-Kerner, Y., Kass, A., Peretz, A.: Initialism disambiguation: man versus machine. J. Am. Soc. Inf. Sci. Technol. 64(10), 2133–2148 (2013)CrossRefGoogle Scholar
  13. 13.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009). CrossRefGoogle Scholar
  14. 14.
    Israel Defense Forces: Dictionary of abbreviations and acronyms. In Hebrew (2010)Google Scholar
  15. 15.
    Itai, A., Wintner, S.: Language resources for Hebrew. Lang. Resour. Eval. 42 (1), 75–98 (2008)CrossRefGoogle Scholar
  16. 16.
    Jain, A., Cucerzan, S., Azzam, S.: Acronym-Expansion Recognition and Ranking on the Web. In: Information reuse and integration (IRI 2007). IEEE, pp. 209–214 (2007)Google Scholar
  17. 17.
    Ji, X., Xu, G., Bailey, J., Li, H.: Mining, ranking, and using acronym patterns. In: Proceedings of the 10th asia-pacific web conference on progress in WWW research and development, APWeb’08, pp. 371–382. Springer, Berlin (2008).
  18. 18.
    Li, C., Ji, L., Yan, J.: Acronym disambiguation using word embedding. In: Proceedings of the 29th AAAI conference on artificial intelligence, pp. 4178–4179. (2015)
  19. 19.
    Mair, C.: Twentieth-century english: history variation and standardization. Studies in english language. Cambridge University Press, Cambridge (2009)Google Scholar
  20. 20.
    Marwick, L.: Biblical and judaic acronyms. KTAV Publishing House, Brooklyn (1979)Google Scholar
  21. 21.
    McCallum, A.: MALLET: a machine learning for language toolkit. (2002)
  22. 22.
    Muchnik, M.: Morpho-phonemic characteristics of acronyms in contemporary Hebrew. Hebrew Linguistics 54, 53–66 (2004). In HebrewGoogle Scholar
  23. 23.
    Nadeau, D., Turney, P.D.: A supervised learning approach to acronym identification. In: Proceedings of the 18th Canadian society conference on advances in artificial intelligence, AI’05, pp. 319–329. Springer, Berlin (2005).
  24. 24.
    Okazaki, N., Ananiadou, S., Tsujii, J.: Building a high-quality sense inventory for improved abbreviation disambiguation. Bioinformatics 26(9), 1246–1253 (2010). CrossRefGoogle Scholar
  25. 25.
    Park, Y., Byrd, R.J.: Hybrid text mining for finding abbreviations and their definitions. In: Proceedings of the 2001 conference on empirical methods in natural language processing, pp. 126–133 (2001)Google Scholar
  26. 26.
    Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel methods - support vector learning. MIT Press.∼jplatt/smo.html (1998)
  27. 27.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  28. 28.
    Ravid, D.: Internal structure constraints on new-word formation devices in modern Hebrew. Folia Linguistica 24, 289–348 (1990)CrossRefGoogle Scholar
  29. 29.
    Schwartz, A.S., Hearst, M.A.: A simple algorithm for identifying abbreviation definitions in biomedical texts. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 451–462 (2003)Google Scholar
  30. 30.
    Spiegel, Y.S.: The use of uncommon abbreviations and acronyms. Yeshurun. In Hebrew (2002)Google Scholar
  31. 31.
    Stevenson, M., Guo, Y., Al Amri, A., Gaizauskas, R.: Disambiguation of biomedical abbreviations. In: Proceedings of the workshop on current trends in biomedical natural language processing, BioNLP ’09. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 71–79. (2009)
  32. 32.
    Tadmor, U.: The acronym in Israeli Hebrew. Leshoneinu La’Am 39, 225–257 (1988). In HebrewGoogle Scholar
  33. 33.
    Xu, J., Huang, Y.: Using SVM to extract acronyms from text. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11, 369–373 (2006). Google Scholar
  34. 34.
    Yi, J., Sundaresan, N.: Mining the web for acronyms using the duality of patterns and relations. In: Proceedings of the 2nd international workshop on web information and data management, WIDM ’99, pp. 48–52. ACM, New York (1999).
  35. 35.
    Zahariev, M.: Efficient acronym-expansion matching for automatic acronym acquisition. In: Proceedings of the international conference on information and knowledge engineering, pp. 32–37 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Computer Science DepartmentTechnionHaifaIsrael
  2. 2.Department of Computer ScienceUniversity of HaifaHaifaIsrael

Personalised recommendations