Advertisement

Tennis manipulation: can we help serena williams win another tournament?

Or can we control a knockout tournament with reasonable complexity?
  • Lior AronshtamEmail author
  • Havazelet Cohen
  • Tammar ShrotEmail author
Article

Abstract

This article focuses on the question of whether a certain candidate’s (player’s) chance to advance further in a tennis tournament can be increased when the ordering of the tournament can be controlled (manipulated by the organizers) according to his own preferences. Is it possible to increase the number of ranking points a player will receive? And most importantly, can it be done in reasonable computational time? The answers to these questions differ for different settings. e.g., the information available on the outcome of each game, the significance of the number of points gained or of the number of games won. We analyzed five different variations of these tournament questions. First the complexity hardness of trying to control the tournaments is shown. Then, the tools of parametrized complexity are used to investigate the source of the problems’ hardness. Specifically, we check whether this hardness holds when the size of the problem is bounded. The findings of this analysis show that it is possible under certain circumstances to control the tournament in favor of a specific candidate in order to help him advance further in the tournament.

Keywords

Manipulation in sport Knockout tournament Control manipulation Parameterized complexity Voting 

Mathematics Subject Classification (2010)

68Q25 68Q17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abboud, A., Lewi, K., Williams, R.: Losing weight by gaining edges European Symposium on Algorithms, pp 1–12. Springer (2014)Google Scholar
  2. 2.
    Arrow, K.J., Sen, A., Suzumura, K.: Handbook of social choice and welfare, vol.2. Elsevier (2010)Google Scholar
  3. 3.
    Aziz, H., Brill, M., Fischer, F., Harrenstein, P., Lang, J., Seedig, H. G.: Possible and necessary winners of partial tournaments. J. Artif. Intell. Res. 54, 493–534 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aziz, H., Gaspers, S., Mackenzie, S., Mattei, N., Stursberg, P., Walsh, T.: Fixing a balanced knockout tournament. In: AAAI, pp 552–558 (2014)Google Scholar
  5. 5.
    Bartholdi, J.J., Tovey, C.A., Trick, M.A.: The computational difficulty of manipulating an election. Soc. Choice Welf. 6(3), 227–241 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bartholdi, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election? Math. Comput. Model. 16(8-9), 27–40 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related digraph problems. Theor. Comput. Sci. 410(52), 5425–5442 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brams, S.J., Fishburn, P.C., Arrow, K.J., Sen, A.K., Suzumura, K.: Handbook of social choice and welfare (2002)Google Scholar
  9. 9.
    Chen, J., Faliszewski, P., Niedermeier, R., Talmon, N.: Elections with few voters: Candidate control can be easy. In: AAAI, pp 2045–2051 (2015)Google Scholar
  10. 10.
    Cormen, T.H.: Introduction to algorithms. MIT press (2009)Google Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for w [1]. Theor. Comput. Sci. 141(1-2), 109–131 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer Science & Business Media (2012)Google Scholar
  13. 13.
    Erdélyi, G., Fellows, M.R., Rothe, J., Schend, L.: Control complexity in bucklin and fallback voting: An experimental analysis. J. Comput. Syst. Sci. 81(4), 661–670 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., Raible, D., Rothe, J.: The complexity of probabilistic lobbying. In: International Conference on Algorithmic DecisionTheory, pp 86–97. Springer (2009)Google Scholar
  15. 15.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Copeland voting fully resists constructive control. In: International Conference on Algorithmic Applications in Management, pp 165–176. Springer (2008)Google Scholar
  16. 16.
    Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pp 121–131. Springer (1993)Google Scholar
  17. 17.
    Flum, J., Grohe, M.: Parameterized complexity theory, volume xiv of texts in theoretical computer science. an eatcs series (2006)Google Scholar
  18. 18.
    Gary, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of np-completeness (1979)Google Scholar
  19. 19.
    Hazon, N., Dunne, P.E., Kraus, S., Wooldridge, M.: How to rig elections and competitions. Proc. COMSOC (2008)Google Scholar
  20. 20.
    Horen, J., Riezman, R.: Comparing draws for single elimination tournaments. Oper. Res. 33(2), 249–262 (1985)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kim, M.P., Suksompong, W., Williams, V.V.: Who can win a single-elimination tournament? arXiv:1511.08416 (2015)
  22. 22.
    Lang, J., Pini, M.S., Rossi, F., Salvagnin, D., Venable, K.B., Walsh, T.: Winner determination in voting trees with incomplete preferences and weighted votes. Auton. Agent. Multi-Agent Syst. 25(1), 130–157 (2012)CrossRefGoogle Scholar
  23. 23.
    Mattei, N., Goldsmith, J., Klapper, A., Mundhenk, M.: On the complexity of bribery and manipulation in tournaments with uncertain information. J. Appl. Log. 13(4), 557–581 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Moulin, H., Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of Computational Social Choice. Cambridge University Press (2016)Google Scholar
  25. 25.
    Russell, T., Walsh, T.: Manipulating tournaments in cup and round robin competitions. In: International Conference on Algorithmic DecisionTheory, pp 26–37. Springer (2009)Google Scholar
  26. 26.
    Sandholm, T.W.: Distributed rational decision making. Multiagent systems: a modern approach to distributed artificial intelligence (1999)Google Scholar
  27. 27.
    Vu, T., Altman, A., Shoham, Y.: On the agenda control problem in knockout tournaments. Proc. COMSOC (2008)Google Scholar
  28. 28.
    Vu, T., Altman, A., Shoham, Y.: On the complexity of schedule control problems for knockout tournaments. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pp. 225–232 International Foundation for Autonomous Agents and Multiagent Systems (2009)Google Scholar
  29. 29.
    Vu, T.D., Shoham, Y., Jackson, M.O., Roughgarden, T.: Knockout tournament design: a computational approach. Stanford University (2010)Google Scholar
  30. 30.
    Walsh, T.: Is computational complexity a barrier to manipulation? Ann. Math. Artif. Intell. 62(1-2), 7–26 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Williams, V.V.: Fixing a tournament. In: Proceedings of AAAI (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Sami Shamoon College of EngineeringAshdodIsrael

Personalised recommendations