Advertisement

Hyper-arc consistency of polynomial constraints over finite domains using the modified Bernstein form

  • Federico BergentiEmail author
  • Stefania Monica
Article
  • 80 Downloads

Abstract

This paper describes an algorithm to enforce hyper-arc consistency of polynomial constraints defined over finite domains. First, the paper describes the language of so called polynomial constraints over finite domains, and it introduces a canonical form for such constraints. Then, the canonical form is used to transform the problem of testing the satisfiability of a constraint in a box into the problem of studying the sign of a related polynomial function in the same box, a problem which is effectively solved by using the modified Bernstein form of polynomials. The modified Bernstein form of polynomials is briefly discussed, and the proposed hyper-arc consistency algorithm is finally detailed. The proposed algorithm is a subdivision procedure which, starting from an initial approximation of the domains of variables, removes values from domains to enforce hyper-arc consistency.

Keywords

Modified Bernstein form Polynomial constraints over finite domains Hyper-arc consistency Constraint satisfaction problems 

Mathematics Subject Classification (2010)

68T01 68T27 68T99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.: Principles of constraint programming. Cambridge University Press, Cambridge, UK (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bergenti, F., Monica, S., Rossi, G.: Polynomial constraint solving over finite domains with the modified Bernstein form. In: Fiorentini, C., Momigliano, A. (eds.) Proceedings 31st Italian Conference on Computational Logic, CEUR Workshop Proceedings, vol. 1645, pp. 118-131. RWTH Aachen (2016)Google Scholar
  3. 3.
    Bergenti, F., Monica, S., Rossi, G.: A subdivision approach to the solution of polynomial constraints over finite domains using the modified Bernstein form. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016 Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 10037, pp. 179-191. Springer International Publishing (2016)Google Scholar
  4. 4.
    Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Communications de la Société Mathématique de Kharkov 2:XIII(1), 1–2 (1912)zbMATHGoogle Scholar
  5. 5.
    Borralleras, C., Lucas, S., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: SAT modulo linear arithmetic for solving polynomial constraints. J. Autom. Reason. 48(1), 107–131 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Davenport, J.H., Siret, Y., Tournier, E.: Computer algebra 2nd edn.: Systems and algorithms for algebraic computation. Academic Press Professional, CA, USA (1993)zbMATHGoogle Scholar
  7. 7.
    Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Computer Aided Geometric Design 29(6), 379–419 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput.-Aided Geom. Des. 5(1), 1–26 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Nickel, K. (ed.) Interval Mathematics 1985, Lecture Notes in Computer Science, vol. 212, pp. 37–56. Springer International Publishing (1986)Google Scholar
  10. 10.
    Garloff, J.: The Bernstein algorithm. Interval Comput. 2, 154–168 (1993)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Garloff, J., Smith, A.P.: Solution of systems of polynomial equations by using Bernstein expansion. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods, pp. 87-97. Springer, Vienna (2001)CrossRefGoogle Scholar
  12. 12.
    von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge University Press, Cambridge, UK (2003)zbMATHGoogle Scholar
  13. 13.
    Grimstad, B., Sandnes, A.: Global optimization with spline constraints: A new branch-and-bound method based on B-splines. J. Glob. Optim. 65(3), 401–439 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lorentz, G.G.: Bernstein polynomials. University of Toronto Press, Toronto, CA (1953)zbMATHGoogle Scholar
  15. 15.
    Mourrain, B., Pavone, J.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nataraj, P., Arounassalame, M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int. J. Autom. Comput. 4(4), 342–352 (2007)CrossRefGoogle Scholar
  17. 17.
    Patil, B.V., Nataraj, P.S.V., Bhartiya, S.: Global optimization of mixed-integer nonlinear (polynomial) programming problems: The Bernstein polynomial approach. Computing 94(2), 325–343 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ray, S., Nataraj, P.: An efficient algorithm for range computation of polynomials using the Bernstein form. J. Glob. Optim. 45, 403–426 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rossi, F., Beek, P.V., Walsh, T.: Handbook of constraint programming. Elsevier, NY, USA (2006)zbMATHGoogle Scholar
  20. 20.
    Sánchez-Reyes, J.: Algebraic manipulation in the Bernstein form made simple via convolutions. Comput.-Aided Des. 35, 959–967 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Steffens, K.G.: The history of approximation theory: From euler to bernstein. Birkhäuser, MA, USA (2006)zbMATHGoogle Scholar
  22. 22.
    Triska, M.: The finite domain constraint solver of SWI-Prolog. In: Schrijvers, T., Thiemann, P. (eds.) Functional and Logic Programming, Lecture Notes in Computer Science, vol. 7294, pp. 307-316. Springer, Berlin Heidelberg (2012)Google Scholar
  23. 23.
    Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract. Log. Programm. 12(1–2), 67–96 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità degli Studi di ParmaParmaItaly

Personalised recommendations