Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions

  • Evgeny Burnaev
  • Ivan PaninEmail author
  • Bruno Sudret


Global sensitivity analysis aims at quantifying respective effects of input random variables (or combinations thereof) onto variance of a physical or mathematical model response. Among the abundant literature on sensitivity measures, Sobol indices have received much attention since they provide accurate information for most of models. We consider a problem of experimental design points selection for Sobol’ indices estimation. Based on the concept of D-optimality, we propose a method for constructing an adaptive design of experiments, effective for calculation of Sobol’ indices based on Polynomial Chaos Expansions. We provide a set of applications that demonstrate the efficiency of the proposed approach.


Design of experiment Sensitivity analysis Sobol indices Polynomial chaos expansions Active learning 

Mathematics Subject Classification (2010)

62K05 62K20 62J10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.J.Beven.: Rainfall-runoff Modelling. The Primer, p. 360. Wiley, Chichester (2000)Google Scholar
  2. 2.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, MA) (2001)Google Scholar
  3. 3.
    Grihon, S., Burnaev, E.V., Belyaev, M.G., Prikhodko, P.V. In: Koziel, S., Leifsson, L. (eds.) : Surrogate Modeling of Stability Constraints for Optimization of Composite Structures. Surrogate-Based Modeling and Optimization. Engineering applications, pp. 359–391. Springer (2013)Google Scholar
  4. 4.
    Saltelli, A., Chan, K., Scott, M.: Sensitivity Analysis. Probability and Statistics Series. West Sussex: Wiley (2000)Google Scholar
  5. 5.
    Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)CrossRefGoogle Scholar
  6. 6.
    Iooss, B., Lemaitre, P.: A Review on Global Sensitivity Analysis Methods. In: Meloni, C, Dellino, G (eds.) Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications. Springer (2015)Google Scholar
  7. 7.
    Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.: Global sensitivity analysis - the primer wiley (2008)Google Scholar
  8. 8.
    Yang, J.: Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ. Model. Softw. 26, 444–457 (2011)CrossRefGoogle Scholar
  9. 9.
    Belyaev, M., Burnaev, E., Kapushev, E., Panov, M., Prikhodko, P., Vetrov, D., Yarotsky, D.: GTApprox: Surrogate modeling for industrial design. Adv. Eng. Softw. 102, 29–39 (2016)CrossRefGoogle Scholar
  10. 10.
    Sudret, B.: Polynomial chaos expansions and stochastic finite element methods. Risk and Reliability in Geotechnical Engineering, chapter 6(K.K. Phoon, J. Ching (Eds.)), pp. 265?300. Taylor and Francis. (2015)Google Scholar
  11. 11.
    Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comp. Exp. 1, 407–414 (1993)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 25, 1508–1517 (2010)CrossRefGoogle Scholar
  13. 13.
    Cukier, R.I., Levine, H.B., Shuler, K.E.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26(1), 1–42 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, vol. 55 (2001)Google Scholar
  15. 15.
    Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 36, 111–147 (1974)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of the Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94, 742–751 (2009)CrossRefGoogle Scholar
  17. 17.
    Burnaev, E., Zaitsev, A., Spokoiny, V.: Properties of the posterior distribution of a regression model based on Gaussian random fields. Autom. Remote. Control. 74 (10), 1645–1655 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Burnaev, E., Zaytsev, A., Spokoiny, V.: The Bernstein-von Mises theorem for regression based on Gaussian processes. Russ. Math. Surv. 68(5), 954–956 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Burnaev, E., Panov, M., Zaytsev, A.: Regression on the Basis of Nonstationary Gaussian Processes with Bayesian Regularization. J. Commun. Technol. Electron. 61 (6), 661–671 (2016)CrossRefGoogle Scholar
  20. 20.
    Belyaev, M., Burnaev, E., Kapushev, Y.: Gaussian process regression for structured data sets. In: Gammerman, A., et al (eds.) Lecture Notes in Artificial Intelligence. Proceedings of SLDS 2015, vol. 9047, pp. 106–115. Springer, London, UK (2015)Google Scholar
  21. 21.
    Burnaev, E., Belyaev, M., Kapushev, E.: Computationally efficient algorithm for Gaussian Processes based regression in case of structured samples. Journal of Computational Mathematics and Mathematical Physics 56(4), 499–513 (2016)CrossRefzbMATHGoogle Scholar
  22. 22.
    Dubreuila, S., Berveillerc, M., Petitjeanb, F., Salauna, M.: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion. Reliab. Eng. Syst. Saf. 121, 263–275 (2014)CrossRefGoogle Scholar
  23. 23.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ghiocel, D., Ghanem, R.: Stochastic finite element analysis of seismic soil-structure interaction. J. Eng. Mech. 128, 66–77 (2002)CrossRefGoogle Scholar
  25. 25.
    Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)CrossRefGoogle Scholar
  26. 26.
    Blatman, G., Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 95, 1216–1229 (2010)CrossRefGoogle Scholar
  27. 27.
    Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25, 183–197 (2010b)Google Scholar
  28. 28.
    Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite elements: a non intrusive approach by regression. Eur. J. Comput. Mech. 15(1–3), 81–92 (2006)zbMATHGoogle Scholar
  29. 29.
    Hastie, T., Tibshirani, R., Friedman, J.: Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer–Verlag, New York (2009)Google Scholar
  30. 30.
    Oehlert, G.W.: A note on the delta method. The American Statistician, 46 (1992)Google Scholar
  31. 31.
    O’Hagan, A.: Polynomial Chaos: A tutorial and critique from a statistician’s perspective. Technical report, university of sheffield UK (2013)Google Scholar
  32. 32.
    Chaloner, K., Verdinelli, I.: Bayesian Experimental Design: A Review. Stat. Sci. 10, 273–304 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pronzato, L.: One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika 71(2), 219–238 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Miller, A., Nguyen, N.K.: Algorithm AS 295: A Fedorov Exchange Algorithm for D-Optimal Design. J. R. Stat. Soc.: Ser. C: Appl. Stat. 43(4), 669–677 (1994). WileyGoogle Scholar
  35. 35.
    Welch, B.L.: The generalization of Student’s problem when several different population variances are involved. Biometrika 34(1–2), 28–35 (1947)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Burnaev, E., Panin, I.: Adaptive Design of Experiments for Sobol Indices Estimation Based on Quadratic Metamodel. In: Gammerman, A. et al. (eds.) Lecture Notes in Artificial Intelligence. Proceedings of SLDS, London, UK, April 20–23, 2015, vol. 9047, pp. 86–96. Springer (2015)Google Scholar
  37. 37.
    Burnaev, E., Panov, M.: Adaptive design of experiments based on gaussian processes. In: Gammerman, A. et al. (eds.) Lecture Notes in Artificial Intelligence. Proceedings of SLDS, London, UK, April 20–23 2015, vol. 9047, pp. 116–126. Springer (2015)Google Scholar
  38. 38.
    Forrester, A., Sobester, A., Keane, A.: Engineering design via surrogate modelling: a practical guide. Wiley (2008)Google Scholar
  39. 39.
    Lee, S., Kwak, B.: Response surface augmented moment method for efficient reliability analysis. Struct. Safe. 28, 261–272 (2006)CrossRefGoogle Scholar
  40. 40.
    Konakli, K., Sudret, B.: Uncertainty quantification in high-dimensional spaces with low-rank tensor approximations Proceedings 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, Crete Island, Greece (2015)Google Scholar
  41. 41.
    Li, C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993)CrossRefGoogle Scholar
  42. 42.
    Worley, B.A.: Deterministic Uncertainty Analysis, ORNL-6428, available from National Technical Information Service, 5285 Port Royal Road, Spring VA 22161 (1987)Google Scholar
  43. 43.
    Moon, H., Dean, A.M., Santner, T.J.: Two-stage sensitivity-based group screening in computer experiments. Technometrics 54(4), 376–387 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Bliznyuk, N., Ruppert, D., Shoemaker, Regis, R., Wild, S., Mugunthan, P.: Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation. Journal of Computational and Graphical Statistics, 17(2) (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Skolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.Kharkevich Institute for Information Transmission ProblemsMoscowRussia
  3. 3.ETH Zurich, Chair of Risk, Safety and Uncertainty QuantificationZurichSwitzerland
  4. 4.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations